CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 6 of 6

_id acadia03_034
id acadia03_034
authors Luhan, G.A., Bhavsar, S. and Walcott, B.L.
year 2003
title Deep-Time ProbeInvestigations in Light Architecture
doi https://doi.org/10.52842/conf.acadia.2003.258
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 258-266
summary This paper presentation presents an interdisciplinary research project conducted by a design team comprised of faculty from the Colleges of Architecture, Engineering, and Astrophysics. The title of the project, Deep-Time Probe, Investigations in Light-Architecture, explores the use of an optically active-SETI experiment that centers on the thematic of time, vision, and movement through space. The realm of architecture was the digital glue that united the varied disciplines. The core of the project is broken down into three intrinsically linked components—data representation—collection, storage, and modulation; the Project Mission Wall; and the resultant Light Architecture or Deep-Time Probe. A small team of architecture students under the direction of one architecture faculty member designed the Mission Wall while the Robotics Department provided CNC machinery to digitally mill and fabricate its components. This same team assembled the 40’x60’x15’ structure in one day. The site of the launch created an adequate interface for the public art structure at the scale of an urban park. The scale of the Mission Wall addressed a variety of places, paces, and scales that mediated between the laser, the context of the surrounding plaza, and pedestrian and vehicular circulation, all while concealing the laser from direct view. The Mission Wall served three functions. It provided a housing for the Deep-Time Probe laser. It created windows and scaffolding for lighting. Moreover, it established a series of “View Corridors” that provided the onlooker with multiple vantage points and thus multiple-readings of information as architecture. Nearly fifty “Time Probe Reporters” gathered information through oral interviews. In addition to messages linked to the interviews, the Deep-Time Probe contained verbal and graphic information, images depicting the design and fabrication processes. At the time of the launch, the design team digitized, specially formatted, converted, and modulated the data into a special high-powered laser that was “launched” into space. An advanced civilization in the universe could theoretically receive and decode this information. The Deep-Time Probe project visualized the strengths of each profession, fostered the creative aspects of each team member, and resulted in a unique and dynamic experience. The deep time probe is right now passing through the Oort Cloud, the debris left over from the formation of our Sun and planets, present as a halo surrounding our solar system . . . a distance of nearly 1.5 trillion miles.
keywords Interdisciplinary Design Research, Information Visualization, and Fabrication
series ACADIA
email
last changed 2022/06/07 07:59

_id 6943
id 6943
authors ML Maher, G Smith and JS Gero
year 2003
title DESIGN AGENTS IN 3D VIRTUALWORLDS
source IJCAI03 Workshop on Cognitive Modeling of Agents and Multi-Agent Interaction, R Sun (ed), IJCAI, Acapulco, pp 92-100.
summary Design agents are rational agents that monitor and modify elements of a designed environment. Special characteristics of design agents include the ability to reason about patterns and concepts, and the ability to act autonomously in modifying or changing the design to achieve their own goals. 3D Virtual Worlds are multi-user distributed systems that provide a designed environment and a closed world environment for studying design agents in a multiagent system. We present a model for a design agent reasoning process and a model for constructing a memory of the agent’s knowledge and interaction with a virtual world. The reasoning process includes sensation, perception, conception, hypothesizing, and planning a sequence of actions. Each agent has a constructed memory: a dynamic and changing view of the designed world that is determined by the agents sense data and reasoning. The agents construct and maintain a representation of the relevant objects in the world using a Function- Behavior-Structure formalism in order to reason about the intended and actual functions of the designed objects in the world. We have implemented this agent model by extending the Active Worlds platform so that each object in the 3D world can have agency. We illustrate the model with a door agent and a multi-agent room that reason about the use of the 3D world.
keywords design agents, virtual worlds, FBS framework
type normal paper
email
last changed 2004/04/10 02:47

_id ecaade03_117_101_bund
id ecaade03_117_101_bund
authors Bund, Sébastien and Do, Ellen Yi-Luen
year 2003
title SPOT! Fetch Light - Interactive navigable 3D visualization of direct sunlight
doi https://doi.org/10.52842/conf.ecaade.2003.117
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 117-124
summary SPOT is a 3D environment for direct sunlight visualization. Implemented in Java 3D, SPOT features two distinct and complementary components: Time Projection and Navigable Animation for virtual interaction. SPOT supports multi-dimensional data visualization including sun angle variations with diurnal and annual cycles in threedimensional space. In SPOT users can sketch on any surface in the 3D environment to indicate the area for simulation. SPOT then generates a spatial distribution representation of the illuminance level on a selected surface over time, rendered with colors of varied gradients. SPOT also enables designers to visualize the temporal information of light distribution over time for a given point. For each point clicked on the 3D model, SPOT generates a calendar diagram where the X and Y axis represent the months of the year and the time of the day. The color of each cell of the calendar is the result of the calculation of the light amount reaching the selected point.
keywords Daylighting, virtual worlds, virtual environments, sketching in 3D, gestureinterface, multi-dimension information visualization
series eCAADe
email
more http://depts.washington.edu/archbook
last changed 2022/06/07 07:54

_id acadia03_052
id acadia03_052
authors Juyal, M., Kensek, K. and Knowles, R.
year 2003
title SolCAD: 3D Spatial Design Tool Tool to Generate Solar Envelope
doi https://doi.org/10.52842/conf.acadia.2003.411
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 411-419
summary In this research the concept of Solar Envelope has been used to develop a 3D Spatial Design Tool tool, SolCAD, for generating an envelope over a given site based on various design parameters. The solar envelope can be imagined as a container, whose boundaries are derived from the sun’s relative motion. Buildings within this container will not overshadow their surroundings during critical periods of solar access for passive and low-energy architecture. The solar envelope is a space-time construct. Its spatial limits are defined by the parameters of land parcel size, shape, orientation, topography and latitude. It also depends on the time or the period of the time for which it is designed. Its time limits are defined by the hours of each day and the season for which solar access is provided to the land parcel (Knowles 1981). This tool intends to generate an envelope over a site of any shape, size and orientation and for different boundary and height conditions of shadow lines. It is suitable for initial stages of building design process to determine the shape of the building even before the design has been conceptualized.
series ACADIA
email
last changed 2022/06/07 07:52

_id avocaad_2003_11
id avocaad_2003_11
authors Michael Cumming
year 2003
title The promise of peer-to-peer computing versus the utility of centralised data models in collaborative design
source LOCAL VALUES in a NETWORKED DESIGN WORLD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Stellingwerff, Martijn and Verbeke, Johan (Eds.), (2004) DUP Science - Delft University Press, ISBN 90-407-2507-1.
summary Peer-to-peer (P2P), or distributed computing, involves having computers on a net¬work -peers- acting as both suppliers, as well as consumers of information. With recent developments, most notably the JXTA initiative by Sun Microsystems, such P2P technology will soon become quite easy to implement, in a standardised and secure fashion. P2P technology holds promise in the domain of collaborative design in that it allows design collaborators to exchange information in a manner that appears to have certain advantages over centralised systems, such as greater spontaneity, the ability to self-organize, better scalability, and the ability to handle transient resources in a more robust manner. However, it is not clear how this new technology can be applied to the information needs of collaborative design, in which centralised data models are usually seen as useful. This paper examines some of the positive and negative implications of this new technology in the context of collaborative design.
keywords Architecture, Local values, Globalisation, Computer Aided Architectural Design
series AVOCAAD
email
last changed 2006/01/16 21:38

_id cf2011_p163
id cf2011_p163
authors Park, Hyoung-June
year 2011
title Mass-Customization in the Design of 4,000 Bus Stops
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 265-278.
summary In Hawaii, ‚"TheBus‚" has been a main transportation system since 1971. Considering the high cost of living in Hawaii and the absence of a rail system, the use of ‚"TheBus‚" has been an instrumental vein of the city life in Honolulu with rhythmical pauses at about 4,000 bus stops in Honolulu. However, existing undifferentiated bus stops are developed from a cost effective mass production system so that they have been problematic for satisfying specific needs from various site conditions. In this research, an integrated computational method of mass-customization for designing 4,000 bus stops is introduced. According to various site conditions, the design of each bus stop is customized. Unlike the mass‚Äêproduced bus stops commonly seen in cities today, the proposed computational method in this paper produces bus stop design outcomes that fit into the physical characteristics of the location in which they are installed. Mass-customization allows for the creation and production of unique or similar buildings and building components, differentiated through digitally‚Äêcontrolled variation (Kolarevic, 2003). The employment of a computational mass‚Äêcustomization in architectural design extends the boundary of design solutions to the satisfaction of multi-objective requirements and unlimited freedom to search alternative solutions (Duarte, 2001; Caldas, 2006). The computational method developed in this paper consists of 1) definition of a prototype, 2) parametric variation, 3) manual deformation, and 4) simulation based deformation. The definition of a prototype is the development of a basic design to be transformed for satisfying various conditions given from a site. In this paper, the bus stop prototype is developed from the analysis of more than 300 bus stops and the categorization of the existing bus stops according to their physical conditions, contextual conditions, climatic conditions, and existing amenities. Based upon the outcome of the analysis, the design variables of a bus stop prototype are defined. Those design variables then guide the basic physical parameters for changing the physical configuration of the prototype according to a given site. From this, many possible design outcomes are generated as instances for further developments. The process of manual deformation is where the designer employs its intuition to develop the selected parametric variation. The designer is compelled to think about the possible implication derived from formal variation. This optional process allows every design decision to have a creative solution from an individual designer with an incidental quality in aesthetics, but substantiated functional quality. Finally the deformation of the selection is guided and controlled by the influence of sun direction/ exposure to the selection. The simulation based deformation starts with the movement of the sun as the trigger for generating the variations of the bus stop prototype. The implementation of the computational method was made within the combination of MEL (Maya Enbedded Language), autodesk MAYA and Ecotect environment.
keywords mass-customization, parametric variation, simulation based deformation
series CAAD Futures
email
last changed 2012/02/11 19:21

No more hits.

HOMELOGIN (you are user _anon_766987 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002