CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 605

_id ijac20031203
id ijac20031203
authors Heylighen, Ann; Neuckermans, Herman
year 2003
title (Learning from Experience)? Promises, Problems and Side-effects of Case-Based Reasoning in Architectural Design
source International Journal of Architectural Computing vol. 1 - no. 1
summary Learning from experience is the essence of Case-Based Reasoning (CBR). Because architects are said to learn design by experience, CBR seemed to hold great promises for their field, which inspired, in the 1990s, the development of various Case-Based Design (CBD) tools. Learning from the experience of developing and using these tools is the objective of this paper. On the one hand, the original expectations seem far from being accomplished today. Reasons for this limited success can be found at three different levels: the cognitive model underlying CBR, the implementation of this model into concrete CBD tools, and the context in which these tools are to be used. On the other hand, CBR research seems to have caused some interesting side effects, such as an increased interest in creativity and copyright, and a re-discovery of the key role that cases play in architectural design.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id bdfd
id bdfd
authors R Sosa and JS Gero
year 2003
title DESIGN AND CHANGE: A MODEL OF SITUATED CREATIVITY
source Approaches to Creativity in Artificial Intelligence and Cognitive Science, Bento, C, Cardosa, A and Gero JS (eds), IJCAI03, Acapulco, pp 25-34.
summary This paper describes current research on the computational modeling of change phenomena in design. In particular it introduces a tutorial view of the moel of design situations (DS) as a methodological basis for experimentation with change processes at the individual and the collective levels of an agent society. Creativity in the DS model takes place within the situated interaction of individuals in a social environment transcending its conventional characterization as purely a cognitive process.
keywords social creativity, agent society
type normal paper
email
last changed 2004/04/10 02:23

_id ijac20031304
id ijac20031304
authors Bustos, Gabriela L.; Burgos, Ivan P.
year 2003
title Virtual Menus on VRML
source International Journal of Architectural Computing vol. 1 - no. 3
summary The Virtual Reality Modeling Language (VRML) has allowed the expansion of resources and possibilities for architectural applications. In order to take even more advantage of VRML, we developed an application of virtual menus within VRML using Java Script as a first step to the creation of a Synthetic Environment Laboratory for architectural design. This paper briefly presents the criteria used to define the menus, the utilization of Visual Basic programming to allow the addition of said virtual menus to any file with extension *. wrl, specific examples of applicability of the menus developed, and how they were inserted in a methodological model of architectural design.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id ijac20031201
id ijac20031201
authors Camarata, Ken; Gross, Mark D.; Yi-Luen Do, Ellen
year 2003
title A Physical Computing Studio: Exploring Computational Artifacts and Environments
source International Journal of Architectural Computing vol. 1 - no. 2
summary This paper describes a studio that explores interfaces for computationally enhanced artifacts and environments. The studio is designed as a traditional architectural design studio, fostering creative thinking and encouraging hands-on learning. It brings students from art, music, architecture, computer science, and engineering together into teams to design and build physical computing projects.The team's unusual mix of knowledge and experience allows for creative solutions. As a result, the studio has become a test bed for new and interesting ideas.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id ecaade2022_398
id ecaade2022_398
authors Dzurilla, Dalibor and Achten, Henri
year 2022
title What’s Happening to Architectural Sketching? - Interviewing architects about transformation from traditional to digital architectural sketching as a communicational tool with clients
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 389–398
doi https://doi.org/10.52842/conf.ecaade.2022.1.389
summary The paper discusses 23 interviewed architects in practice about the role of traditional and digital sketching (human-computer interaction) in communication with the client. They were selected from 1995 to 2018 (the interval of graduation) from three different countries: the Czech Republic (CR), Slovakia (SR), Netherland (NR). To realize three blending areas that impact the approach to sketching: (I) Traditional hand and physical model studies (1995-2003). (II)Transition form - designing by hand and PC (2004–2017). (III) Mainly digital and remote forms of designing (2018–now). Interviews helped transform 31 “parameters of tools use” from the previous theoretical framework narrowed down into six main areas: (1) Implementation; (2)Affordability; (3)Timesaving; (4) Drawing support; (5) Representativeness; (6) Transportability. Paper discusses findings from interviewees: (A) Implementation issues are above time and price. (B) Strongly different understanding of what digital sketching is. From drawing in Google Slides by mouse to sketching in Metaverse. (C) Substantial reduction of traditional sketching (down to a total of 3% of the time) at the expense of growing responsibilities. (D) 80% of respondents do not recommend sketching in front of the client. Also, other interesting findings are further described in the discussion.
keywords Architectural Sketch, Digital Sketch, Effective Visual Communication
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia03_001
id acadia03_001
authors Jabi, Wassim
year 2003
title Digital Design
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, p. 16
doi https://doi.org/10.52842/conf.acadia.2003.x.a7r
summary Describing design as a sequence of steps cannot convey the complexity of social interactions that it embodies. Design is not merely a process, but a co-evolution of efforts and events in various places and times—both synchronous and asynchronous. Designers share their values, effort and expertise within design settings via artifacts that further the design process. Increasingly, these design settings in academia, research, and professional practice combine physical and virtual modalities such as immersion, projection, and a range of interaction technologies. Peter Anders has described such spaces as cybrids: hybrids that integrate virtual and physical space. In these settings, designers use overlapping physical and virtual artifacts and tools to arrive at a co-operative design resolution. Within collaborative design, these artifacts take on an additional role. As embodiments of design ideas and actions, they become media for communication. Donald Schon asserts that design should be considered a form of making, rather than primarily a form of problem solving, information processing or research. Indeed the line separating creation from design is becoming increasingly blurred. For the design artifact itself may become a part of the design proposal—its virtual presence incorporated within a cybrid structure or object. We may in the future see a proliferation of cybrid settings that support collaborative, digital design. The technologies for this already exist in collaborative tools, networked computing, scanning and immersive media. However, it will take a creative vision to see how these disparate tools and devices can integrate within the ideal design setting.
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2007_057
id caadria2007_057
authors Kouide, Tahar; G. Paterson
year 2007
title BIM as a Viable Collaborative Working Tool: A Case Study
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.l1j
summary For the majority of design practices in the construction industry the use of CAD systems have been used to merely automate hand drafting (Cohen 2003). This is the traditional way of working that has changed very little since the introduction of commercial CAD systems. These practices as means of communication are being replaced by a virtual building model environment which encapsulates all of the information for an entire construction project and thereby enables computer-supported co-operative working practices. (Newton 2003) This study aims to determine whether Building Information Modelling (BIM) can, and whether it will, replace traditional communication media as the standard in the industry for computersupported co-operative working practices in the Architecture Engineering and construction (AEC) sector. The bulk of the research comprises an extensive literature review looking at the principal reasons behind the development of BIM, the potential advantages and drawbacks of the technology, and the barriers and obstacles which inhibit its adoption as a means of computer-supported co-operative working. The findings of the study have been validated and analysed against current practice in the field through a live case study analysis of the on-going Heathrow airport Terminal 5 Project in London (UK). The Terminal 5 case study demonstrates that present software tools, although usable, still present significant implicit technical constraints to wider implementation among Small and Medium Enterprises (SMEs). The case study has also shown that in practice, the success of BIM depends just as much on the working practices and ethos of participants in the project chain as it does on the capabilities of the software itself, in particular the willingness of practitioners to change traditional working practices. The case study has shown that the present investment, in terms of time, cost, and effort required to implementing the technology means that BIM is unlikely to be adopted on small simple projects where conventional CAD is still adequate. It also highlighted that BIM tools currently available are not yet adequately developed to satisfy the requirements of the many procurement and especially contractual arrangements which presently exist and many firms will be frightened off by the unresolved legal issues which may arise from implementing BIM in their practices.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20031405
id ijac20031405
authors Woodbury, Robert F.; Burrow, Andrew L.
year 2003
title Notes on the Structure of Design space
source International Journal of Architectural Computing vol. 1 - no. 4
summary Design space exploration is a long-standing focus in computational design research. Its three main threads are accounts of designer action, development of strategies for amplification of designer action in exploration and discovery of computational structures to support exploration. Chief amongst such structures is the design space - the network structure of related designs that are visited in an exploration process. There is relatively little research on design spaces to date. This paper sketches a partial account of the structure of both design spaces and research to develop them. It focuses largely on the implications of designers acting as explorers.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia03_006
id acadia03_006
authors Dobson, Adrian and Lancaric, Peter
year 2003
title VIRTUreALITY Digital Urban Modelling as a Community Design Form
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 49-53
doi https://doi.org/10.52842/conf.acadia.2003.049
summary This paper describes a practice-led research project that investigates the application of digital modelling and communication technologies in urban and architectural design. The project is being carried out by our team with the collaboration of the architecture and planning departments at local borough council and local community participation. The main methodology for the project revolves around the evolution of an interactive three-dimensional digital urban model, which incorporates a variety of visual, graphic and numeric data. This digital model is utilised within a web site to help facilitate a participatory approach to the physical and social regeneration of an inner urban zone, in terms of both the built environment and the attempted creation of a virtual community.
series ACADIA
last changed 2022/06/07 07:55

_id ecaade03_083_03_dobson
id ecaade03_083_03_dobson
authors Dobson, Adrian and Lancaric, Peter
year 2003
title From Virtuality to Reality - Collaborative Digital Design in the Urban Environment
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 83-87
doi https://doi.org/10.52842/conf.ecaade.2003.083
summary This paper describes work in progress on a collaborative project being undertaken by the Department of Art and Design at the University of Luton with the architecture and planning departments at Luton Borough Council and community participation. Focussing on the Plaiters Lea urban zone in Luton, the project uses a three-dimensional digital urban model of the townscape, as a collaborative design and communication tool for urban regeneration. The proposals being developed include elements of architectural and urban design, landscape design and public art. The philosophical motivation for the project is that of the community architecture and arts movements, in which a wide constituency of stakeholders is involved in the evolution of design proposals. The digital model is the key feature of a world-wide-web site that facilitates the exchange of design data between the participants. Digital modelling work has been used for undergraduate CAD skills development, and students are contributing design proposals as part of their studio work. Hence the project also has a pedagogic component.
series eCAADe
email
more http://www.luton.ac.uk
last changed 2022/06/07 07:55

_id ecaadesigradi2019_471
id ecaadesigradi2019_471
authors Güzelci, Orkan Zeynel, Alaçam, Sema and Güzelci, Handan
year 2019
title Trend Topics and Changing Concepts of Computational Design in the Last 16 Years - A content analysis
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-430
doi https://doi.org/10.52842/conf.ecaade.2019.1.423
summary This study argues that analysis of written content might be helpful to provide clues at a certain extent on the future directions of current research areas and the emergence of new study areas. In the scope of the study, the International Journal of Architectural Computing (IJAC) which has been a scientific platform covering many pioneer publications on education research in computer-aided architectural design (CAAD) field was selected as source content. Although the size of the source domain is limited, the analysis of abstracts and titles of 439 articles published in IJAC between 2003 and 2018 revealed promising results which can be examined under four characteristics: "constant", "emerging", "fading" and "solidifying" concepts. The tokens in the analysis process are words, phrases, topic nodes and links between topic nodes. The outcomes of this study might contribute to tracking the evolution of concepts their emergence or disusage in different time and contexts, and interrelations between different concepts.
keywords content analysis; computational design concepts; IJAC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id ecaade03_229_40_monedero
id ecaade03_229_40_monedero
authors Monedero, Javier and Muñoz, Francisco
year 2003
title Data Organization in City Modeling
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 229-236
doi https://doi.org/10.52842/conf.ecaade.2003.229
summary Working with big models requires a good balance between the technical requirements of the model and the technical requirements of the user. Although every virtual model, whether it is 2d, 3d or 4d, may be regarded as a particular form of a general data base, it is clear that is not, at the present time, a very flexible data base. It does not behave like a relational data base that can be inspected in a flexible way. On the contrary, it has a rigid structure, a hierarchical structure that is well suited for performance but is badly suited for navigating through the data and gathering derived information. These are well known disadvantages and advantages, related to the evolution of the data base software that has moved, in the last 30 years, from a hierarchical to a relational structure. These considerations are relevant for any kind of architectural or engineering model. But are particularly pertinent in the case of the model of a city where everything must have its place, and should relate properly with other parts of the model, be susceptible of further modifications and be able to receive new information. These and other related issues have been encountered and developed during the construction of several models at our Laboratory at the ETS Architecture of Barcelona. Our paper explains the main decisions we had to take during the course of these works with special emphasis on those aspects related with the organization of different kind of data in a unified whole that had to be sent to other professionals and had to be, for that reason, organized in a clear and comprehensible way for its further development.
keywords CAAD; City Modeling; Visual Simulation
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2003_c2-4
id caadria2003_c2-4
authors Al-Sallal, Khaled A.
year 2003
title Integrating Energy Design Into Caad Tools: Theoretical Limits and Potentials
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 323-340
doi https://doi.org/10.52842/conf.caadria.2003.323
summary The study is part of a research aims to establish theoretical grounds essential for the development of user efficient design tools for energy-conscious architectural design, based on theories in human factors of intelligent interfaces, problem solving, and architectural design. It starts by reviewing the shortcomings of the current energy design tools, from both architectural design and human factor points of view. It discusses the issues of energy integration with design from three different points of view: architectural, problem-solving, and human factors. It evaluates theoretically the potentials and limitations of the current approaches and technologies in artificial intelligence toward achieving the notion "integrating energy design knowledge into the design process" in practice and education based on research in the area of problem solving and human factors and usability concerns. The study considers the user interface model that is based on the cognitive approach and can be implemented by the hierarchical structure and the object-oriented model, as a promising direction for future development. That is because this model regards the user as the center of the design tool. However, there are still limitations that require extensive research in both theoretical and implementation directions. At the end, the study concludes by discussing the important points for future research.
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia03_022
id acadia03_022
authors Anders, Peter
year 2003
title Towards Comprehensive Space: A context for the programming/design of cybrids
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 161-171
doi https://doi.org/10.52842/conf.acadia.2003.161
summary Cybrids have been presented as mixed realities: spatial, architectural compositions comprised of physical and cyberspaces (Anders 1997). In order to create a rigorous approach to the design of architectural cybrids, this paper offers a model for programming their spaces. Other than accepting cyberspaces as part of architecture’s domain, this approach is not radical. Indeed, many parts of program development resemble those of conventional practice. However, the proposition that cyberspaces should be integrated with material structures requires that their relationship be developed from the outset of a project. Hence, this paper provides a method for their integration from the project’s earliest stages, the establishment of its program. This study for an actual project, the Planetary Collegium, describes a distributed campus comprising buildings and cyberspaces in various locales across the globe. The programming for these cybrids merges them within a comprehensive space consisting not only of the physical and cyberspaces, but also in the cognitive spaces of its designers and users.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id archidna_thesis
id archidna_thesis
authors Doo Young Kwon
year 2003
title ARCHIDNA: A GENREATIVE SYSTEM FOR SHAPE CONFIGURATONS
source University of Washington, Design Machine Group
summary his thesis concerns a new generation process for shape configurations using a set of operations. The approach derives from analyzing a particular design style and programming them into a computer. It discusses how generative CAD software can be developed that embodies a style and how this software can serve in the architectural design process as a computational design tool. The thesis proposes a prototype software system, ArchiDNA, to demonstrate the use of operations to generate drawings in a specific design style. ArchiDNA employs a set of operations to produce design drawings of shape configuration in Peter Eisenman's style for the Biocentrum building plan in Frankfurt, Germany. The principles of form generation are defined as a set of operations. ArchiDNA generates 2D and 3D drawings similar to Eisenmans plan and model for the Biocentrum building. The extension system of ArchiDNA, called ArchiDNA++, supports designers in defining operations and generating shape configurations. Designers can enter and edit their own shapes for the generation process and also control the parameters and attributes for shape operations. Thus, designers can manage the generation process and explore using ArchiDNA++, to generate shape configurations that are consistent with their own drawing style.
series thesis:MSc
type normal paper
email
last changed 2004/06/02 19:40

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaade2010_233
id ecaade2010_233
authors Guerbuez, Esra; Cagdas, Guelen; Alacam, Sema
year 2010
title A Generative Design Model for Gaziantep’s Traditional Pattern
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.841-849
doi https://doi.org/10.52842/conf.ecaade.2010.841
wos WOS:000340629400090
summary This paper describes a research to develop new urban designalternatives for Gaziantep by using fractal based approaches. The aim of the research is not only generating new form alternatives but also considering the continuity of traditional architectural and urban pattern which faces deterioration. Within this study, it is intended to test the applicability of the fractal based generative approaches and explore the potential advantages. The method called CADaFED (Ediz, 2003) is updated to be used in one of the 3d modeling programs, 3DsMax scripting and it is used as an experimental tool in two-day student workshop. The working field is limited as Bey Neighbourhood in Gaziantep for its well-preserved architectural characteristics. In this paper, the outcomes of the student workshop will be evaluated and discussed in the sense of affirmative effects of fractal based design approaches.
keywords Generative design; Fractal based design; Computational architectural design; Traditional pattern
series eCAADe
email
last changed 2022/06/07 07:51

_id 4450
id 4450
authors J Jupp and JS Gero
year 2003
title TOWARDS COMPUTATIONAL ANALYSIS OF STYLE IN ARCHITECTURAL DESIGN
source IJCAI03 Workshop on Computational Approaches to Style Analysis and Synthesis, S Argamon (ed), IJCAI, Acapulco, pp 1-10.
summary This paper proposes a computational model of design that attempts to capture within a social context two important aspects of style: ‘content’ and ‘manner’. We present a characterisation of style for the artefact based on a framework that consists of information theoretic measures. We discuss the benefits the study of social networks offers a computational analysis of both aspects of style. It is our aim to bring style as ‘content’ and style as ‘manner’ together using this approach.
keywords style, information theory
type normal paper
email
last changed 2004/04/10 02:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_868669 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002