CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 590

_id acadia03_008
id acadia03_008
authors Cabrinha, Mark
year 2003
title Function Follows Form: 10 Sticks (and a Bench)
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 57-65
doi https://doi.org/10.52842/conf.acadia.2003.057
summary While the introduction of digital media in the design studio often emphasizes virtual realms, the effect of new fabrication technology on the architect brings the architect back to the realm of master-builder rather than distancing the architect from reality. While purely digital projects have pushed the development of form, they have also placed an emphasis on form over material. However, with the intention to physically build a project, the connections between process, form, and material become intertwined. The inception of this project also served as a clear reminder that the tools we use affect the way we think. This project began as a simple idea: how a column becomes animated to form an arch over time. The digitization of this idea took literally minutes in Maya. It was exported and further modeled in AutoCAD, and then rendered and reanimated in 3D Studio-Viz. This was a very brief, two-week introductory project, in a class on drafting and wood light-frame construction. It served to make a greater connection between digital media, the design process, analog drawing, and the role of craft and material.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e149b
id sigradi2006_e149b
authors Kendir, Elif
year 2006
title Prêt-à-Construire – An Educational Inquiry into Computer Aided Fabrication
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 162-165
summary This paper aims to show and discuss the relevance of developing necessary strategies for reintegrating the concept of fabrication into the architectural design process. The discussion will be partly based on the outcome of a graduate architectural design studio conducted in Spring semester 2002-2003. The graduate studio was part of a series of exploratory studies conducted on the nature of architectural design process transformed by information technologies. Preceded by studios investigating cognition and representation, this last studio focused on the concept of fabrication. The overarching aim of the studio series was to put CAD and CAM in context both within the actual architectural design process and within architectural education. The last of this series, which will be discussed within the frame of this paper, has specifically focused on CAM and the concept of fabrication in architecture. In accordance with the nature of a design studio, the research was more methodological than technical. The studio derived its main inspiration from the constructional templates used in dressmaking, which can be considered as an initial model for mass customization. In this context, the recladding of Le Corbusier’s Maison Domino was given as the main design problem, along with several methodological constraints. The main constraint was to develop the design idea through constructional drawings instead of representational ones. The students were asked to develop their volumetric ideas through digital 3D CAD models while working out structural solutions on a physical 1/50 model of Maison Domino. There was also a material constraint for the model, where only specified types of non-structural paper could be used. At this stage, origami provided the working model for adding structural strength to sheet materials. The final outcome included the explanation of different surface generation strategies and preliminary design proposals for their subcomponents. The paper will discuss both the utilized methodology and the final outcome along the lines of the issues raised during the studio sessions, some of which could be decisive in the putting into context of CAD – CAM in architectural design process. One such issue is mass customization, that is, the mass production of different specific elements with the help of CAM technologies. Another issue is “open source” design, indicating the possibility of a do-it-yourself architecture, where architecture is coded as information, and its code can be subject to change by different designers. The final key issue is the direct utilization of constructional drawings in the preliminary design phase as opposed to representational ones, which aimed at reminding the designer the final phase of fabrication right from the beginning. Finally, the paper will also point at the problems faced during the conduct of the studio and discuss those in the context of promoting CAM for architectural design and production in countries where there is no actual utilization of these technologies for these purposes yet.
keywords Education; Fabrication; CAM
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia03_007
id acadia03_007
authors Kolarevic, Branko
year 2003
title Digital Fabrication: From Digital To Material
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 54-55
doi https://doi.org/10.52842/conf.acadia.2003.054
summary In the past, architects drew what they could build, and built what they could draw, as observed by Bill Mitchell. This reciprocity between the means of representation and production has not disappeared entirely in the digital age. Knowing the production capabilities and availability of particular digitally-driven fabrication equipment enables architects to design specifically for the capabilities of those machines. The consequence is that architects are becoming much more directly involved in the fabrication processes, as they create the information that is translated by fabricators directly into the control data that drives the digital fabrication equipment.
series ACADIA
email
last changed 2022/06/07 07:51

_id sigradi2003_020
id sigradi2003_020
authors Abarca, R., Díaz, S. and Moreno, S.
year 2003
title Desarrollo de material informatico-educativo para la enseñanza de la geometría a estudiantes de diseño (Development of IT-based educational material for the teaching of geometry to students of design)
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary This paper is born as an answer to the meaningful learning difficulties and academic performance in Spatial and Flat Geometry course on second year Design School at Universidad de las Americas University, Santiago de Chile. The problem is faced from the potentiality that digital environment gives us in representation, display options, shape and projection testing, analysis and non visual accounts to teach flat and spatial geometry within the receptors' codes and coherent with designer's own language.
series SIGRADI
email
last changed 2016/03/10 09:47

_id diss_anders
id diss_anders
authors Anders, P.
year 2003
title A Procedural Model for Integrating Physical and Cyberspaces in Architecture
source Doctoral dissertation, University of Plymouth, Plymouth, U.K
summary This dissertation articulates opportunities offered by architectural computation, in particular the digital simulation of space known as virtual reality (VR) and its networked, social variant cyberspace. Research suggests that environments that hybridize technologies call for a conception of space as information, i.e. space is both a product of and tool for cognition. The thesis proposes a model whereby architecture can employ this concept of space in creating hybrids that integrate physical and cyberspaces.The dissertation presents important developments in architectural computation that disclose concepts and values that contrast with orthodox practice. Virtual reality and cyberspace, the foci of this inquiry, are seen to embody the more problematic aspects of these developments. They also raise a question of redundancy: If a simulation is good enough, do we still need to build? This question, raised early in the 1990's, is explored through a thought experiment - the Library Paradox - which is assessed and critiqued for its idealistic premises. Still, as technology matures and simulations become more realistic the challenge posed by VR/cyberspace to architecture only becomes more pressing. If the case for virtual idealism seems only to be strengthened by technological and cultural trends, it would seem that a virtual architecture should have been well established in the decade since its introduction.Yet a history of the virtual idealist argument discloses the many difficulties faced by virtual architects. These include differences between idealist and professional practitioners, the failure of technology to achieve its proponents' claims, and confusion over the meaning of virtual architecture among both architects and clients. However, the dissertation also cites the success of virtual architecture in other fields - Human Computer Interface design, digital games, and Computer Supported Collaborative Work - and notes that their adoption of space derives from practice within each discipline. It then proposes that the matter of VR/cyberspace be addressed from within the practice of architecture, a strategy meant to balance the theoretical/academic inclination of previous efforts in this field.The dissertation pursues an assessment that reveals latent, accepted virtualities in design methodologies, instrumentation, and the notations of architectural practices. Of special importance is a spatial database that now pervades the design and construction processes. The unity of this database, effectively a project's cyberspace, and its material counterpart is the subject of the remainder of the dissertation. Such compositions of physical and cyberspaces are herein called cybrids. The dissertation examines current technologies that cybridize architecture and information technology, and proposes their integration within cybrid wholes. The concept of cybrids is articulated in seven principles that are applied in a case study for the design for the Planetary Collegium. The project is presented and critiqued on the basis of these seven principles. The dissertation concludes with a discussion of possible effects of cybrids upon architecture and contemporary culture.
series thesis:PhD
email
last changed 2005/09/09 12:58

_id acadia03_022
id acadia03_022
authors Anders, Peter
year 2003
title Towards Comprehensive Space: A context for the programming/design of cybrids
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 161-171
doi https://doi.org/10.52842/conf.acadia.2003.161
summary Cybrids have been presented as mixed realities: spatial, architectural compositions comprised of physical and cyberspaces (Anders 1997). In order to create a rigorous approach to the design of architectural cybrids, this paper offers a model for programming their spaces. Other than accepting cyberspaces as part of architecture’s domain, this approach is not radical. Indeed, many parts of program development resemble those of conventional practice. However, the proposition that cyberspaces should be integrated with material structures requires that their relationship be developed from the outset of a project. Hence, this paper provides a method for their integration from the project’s earliest stages, the establishment of its program. This study for an actual project, the Planetary Collegium, describes a distributed campus comprising buildings and cyberspaces in various locales across the globe. The programming for these cybrids merges them within a comprehensive space consisting not only of the physical and cyberspaces, but also in the cognitive spaces of its designers and users.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia03_042
id acadia03_042
authors Anzalone, Phillip and Clarke, Cory
year 2003
title Architectural Applications of Complex Adaptive Systems
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 325-335
doi https://doi.org/10.52842/conf.acadia.2003.325
summary This paper presents methods and case studies of approaching architectural design and fabrication utilizing Complex Adaptive Systems (CASs). The case studies and observations described here are findings from a continuing body of research investigating applications of computational systems to architectural practice. CASs are computational mechanisms from the computer science field of Artificial Life that provide frameworks for managing large numbers of elements and their inter-relationships. The ability of the CASs to handle complexity at a scale unavailable through non-digital means provides new ways of approaching architectural design, fabrication, and practice.
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia06_150
id acadia06_150
authors Boza, Luis Eduardo
year 2006
title (Un) Intended Discoveries Crafting the Design Process
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 150-157
doi https://doi.org/10.52842/conf.acadia.2006.150
summary Computer Numeric Controlled (CNC) fabrication machineries are changing the way we design and build. These technologies have increased productivity through greater efficiencies and have helped to create new forms of practice, including increased specializations and broader collaborative approaches. (Kieran Timberlake 2003: 31). However, some argue that these technologies can have a de-humanizing effect, stripping the human touch away from the production of objects and redistributing the associated skills to machines. (Dormer 1997: 103). The (Digital) Craft studio explored the notions of technology and craft to understand how and when designers should exploit the tools employed (both the hand and the machine) during the design and production processes.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia03_033
id acadia03_033
authors Ceccato, Cristiano
year 2003
title From Emergence of Form to the Forming of Logic
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 254-255
doi https://doi.org/10.52842/conf.acadia.2003.254
summary Driven by digital design tools and production methods, the interplay of theory and practice in architecture is converging on the notion of process. Process definition and process tools are now an essential part of design, design development, fabrication and construction. The word process itself can be interpreted in different ways, as being deterministic or non-deterministic. Computer programming can be understood as a design process and a structuring mechanism. Rather than making finite designs (products), architects are beginning to understand their roles as toolmakers, developing algorithmic processes that incorporate constraints and intents into software / procedures / programming. New methodologies such as parametric-associative design hierarchies are a clear example of semantic design structuring (a form of grammatical ordering); the creation of hierarchical parametric models can be understood as a form of visual programming. In a deterministic sense, it can be argued that if a process is correct and critical, then by definition so will be the product.
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2006_597
id caadria2006_597
authors CHOR-KHENG LIM, CHING-SHUN TANG, WEI-YEN HSAO, JUNE-HAO HOU, YU-TUNG LIU
year 2006
title NEW MEDIA IN DIGITAL DESIGN PROCESS: Towards a standardize procedure of CAD/CAM fabrication
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 597-599
doi https://doi.org/10.52842/conf.caadria.2006.x.r4i
summary In 1990, due to the traditional architecture design and construction method difficult to build the complicated and non-geometry free-form Fish Structure in Barcelona, architect Frank Gehry started learn from the field of aerospace to utilize CAD/CAM technology in design and manufacture process. He created the free-form fish model in CAD system and exported the digital CAD model data to CAM machine (RP and CNC) to fabricate the design components, and finally assembled on the site. Gehry pioneered in the new digital design process in using CAD/CAM technology or so-called digital fabrication. It becomes an important issue recently as the CAD/CAM technology progressively act as the new digital design media in architectural design and construction process (Ryder et al., 2002; Kolarevic, 2003). Furthermore, in the field of architecture professional, some commercial computer systems had been developed on purpose of standardizes the digital design process in using CAD/CAM fabrication such as Gehry Technologies formed by Gehry Partners; SmartGeometry Group in Europe and Objectile proposed by Bernard Cache. Researchers in the research field like Mark Burry, Larry Sass, Branko Kolarevic, Schodek and others are enthusiastic about the exploration of the role of CAD/CAM fabrication as new design media in design process (Burry, 2002; Schodek et al., 2005; Lee, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2003_107
id sigradi2003_107
authors da Silva Pereira, M., Couri Fabião, A., dos Reis, M.H. and Fonseca Nascimento, E.
year 2003
title 1931 Arte e Revolução: Lúcio Costa e a Reforma da Escola de Belas Artes (1931 Art and Revolution: Lúcio Costa and the School of Fine Arts)
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary The cd-rom 1931 Art and Revolution: Lucio Costa and the School of Fine Arts has been produced from newspaper excerpts published between November 1930 and October 1931, registering Lúcio Costa's term as director of the ENBA, the national school of Fine Arts, and the social-cultural context at the time. The transfer of the collected information to digital media aims to spread the knowledge of the selected events, making it possible for researchers to study the subject anywhere. This project represents a segment of the effort of our group, whose wider objective is to generate material and knowledge associated with the intellectual history of Brazilian architecture and urbanism, from the 19th and 20th centuries.
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id sigradi2003_056
id sigradi2003_056
authors Fabião, Aline Couri and Amim, Rodrigo Rosa
year 2003
title Diagnóstico Digital Grande Méier (Digital diagnosis of the "Great Meier")
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary The cd-rom Grande Méier - Digital Diagnosis was created to organize the information obtained from visits to the local studied in disciplines of the course of Architecture and Urbanism at the Federal University of Brazil. Whe made the visits using a digital8 video camera, trying to collect different kinds of information, from interviews to objects found in the streets. The cd-rom is a way to put together different kinds of information: the local material and the statistic graphics. We hope to bring new ideas to the concept of diagnostic products.
series SIGRADI
email
last changed 2016/03/10 09:51

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia03_010
id acadia03_010
authors Kilian, Axel
year 2003
title Fabrication of Partially Double-Curved Surfaces out of Flat Sheet Material Through a 3D Puzzle Approach
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 75-83
doi https://doi.org/10.52842/conf.acadia.2003.075
summary The topic of this paper is the connection of digital modeling with generative programming and rapid prototyping, to produce physical sketch surface models. The physical surface models are assembled out of developable strips connected through a puzzle-like detail. The use of programming as a design approach allows the generation of connection details that corresponds to the rules of flat sheet rapid prototyping techniques of laser cutting and water jet cutting. With numerically controlled cutting, there is no need to keep the joint detail related to manually achievable forms or to apply a standardized dimension. This paper demonstrates the possibilities of programming to generate cutting geometries that adapt to the local surface properties. The larger perspective of the research approach is the question of how to formulate and capture design intention through programming. What influence does the use of generative modeling in combination with rapid prototyping have on the design language of physical objects?
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia03_000
id acadia03_000
authors Klinger, Kevin (Ed.)
year 2003
title Connecting >> Crossroads of Digital Discourse
source Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8, Indianapolis (Indiana) 24-27 October 2003, 436 p.
doi https://doi.org/10.52842/conf.acadia.2003
summary Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline. Meanwhile, evolving digital technology continues to serve as a key agent for prevailing innovations and new ideas in architecture. Still, this feels familiar, as technology has always been a catalyst for new ideas in architecture. A positive digital future in architecture requires a clearer definition of principles and skills necessary to maintain a rigor in emerging digital projects/projections. At the same time, recognition about the significance of the already existing digital scholarship in architecture must be connected with emerging lines of inquiry evolving within the discipline. Healthy disciplines remain tolerant of a state of flux by constantly questioning the inclusion|exclusion, import|export, and collaboration|isolation to|from new ideas, new techniques, new disciplines, and new technology. At the perimeter of this nebulous exchange, an innovative new digital discourse is emerging that offers some unexpected new conduits to an attentive discipline of architecture. Topic nodes have evolved which augment this discourse with overlapping issues, as well as a particular set of important distinctions from one another: Digital Pedagogy, Digital Tools, Digital Production/ Fabrication, Digital Visualization, Digital Projects, Digital Design, Digital Representation, Digital Thinking, and Digital Practice.
series ACADIA
email
more www.acadia.org
last changed 2022/06/07 07:49

_id acadia03_034
id acadia03_034
authors Luhan, G.A., Bhavsar, S. and Walcott, B.L.
year 2003
title Deep-Time ProbeInvestigations in Light Architecture
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 258-266
doi https://doi.org/10.52842/conf.acadia.2003.258
summary This paper presentation presents an interdisciplinary research project conducted by a design team comprised of faculty from the Colleges of Architecture, Engineering, and Astrophysics. The title of the project, Deep-Time Probe, Investigations in Light-Architecture, explores the use of an optically active-SETI experiment that centers on the thematic of time, vision, and movement through space. The realm of architecture was the digital glue that united the varied disciplines. The core of the project is broken down into three intrinsically linked components—data representation—collection, storage, and modulation; the Project Mission Wall; and the resultant Light Architecture or Deep-Time Probe. A small team of architecture students under the direction of one architecture faculty member designed the Mission Wall while the Robotics Department provided CNC machinery to digitally mill and fabricate its components. This same team assembled the 40’x60’x15’ structure in one day. The site of the launch created an adequate interface for the public art structure at the scale of an urban park. The scale of the Mission Wall addressed a variety of places, paces, and scales that mediated between the laser, the context of the surrounding plaza, and pedestrian and vehicular circulation, all while concealing the laser from direct view. The Mission Wall served three functions. It provided a housing for the Deep-Time Probe laser. It created windows and scaffolding for lighting. Moreover, it established a series of “View Corridors” that provided the onlooker with multiple vantage points and thus multiple-readings of information as architecture. Nearly fifty “Time Probe Reporters” gathered information through oral interviews. In addition to messages linked to the interviews, the Deep-Time Probe contained verbal and graphic information, images depicting the design and fabrication processes. At the time of the launch, the design team digitized, specially formatted, converted, and modulated the data into a special high-powered laser that was “launched” into space. An advanced civilization in the universe could theoretically receive and decode this information. The Deep-Time Probe project visualized the strengths of each profession, fostered the creative aspects of each team member, and resulted in a unique and dynamic experience. The deep time probe is right now passing through the Oort Cloud, the debris left over from the formation of our Sun and planets, present as a halo surrounding our solar system . . . a distance of nearly 1.5 trillion miles.
keywords Interdisciplinary Design Research, Information Visualization, and Fabrication
series ACADIA
email
last changed 2022/06/07 07:59

_id acadia03_005
id acadia03_005
authors Maher, Andrew and Burry, Mark
year 2003
title The Parametric Bridge: Connecting Digital Design Techniques in Architecture And Engineering
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 39-47
doi https://doi.org/10.52842/conf.acadia.2003.039
summary New design opportunities that are facilitated by cross-disciplinary collaboration in both practice and research are available through the use of high level design software that simultaneously offers real time access to both analysis and design geometry in shared three-dimensional digital models. Here we present a collaborative research project between architects and structural engineers for the design of a pedestrian bridge, conceived to test current digital design processes in architectural and structural engineering practice with those in research through the use of models of parametrically defined associative geometry. In this project, the digital model’s architectural design geometry was constrained by the bridge’s fabrication methods and linked with its engineering analysis. Iterations of the design geometry were then optimised or ‘solved’ to produce variations according to the design parameters offered up for change. The shift of the professions from the plane to digital space exposes the possibilities of new design techniques with the exchange of design parameters potentially operating as a digital dialogue between the disciplines—a kind of digital version of Antoni Gaudi’s funicular hanging model—a metaphor of the digital space that has been developed for this project.
series ACADIA
email
last changed 2022/06/07 07:59

_id sigradi2003_028
id sigradi2003_028
authors Méndez, Ricardo
year 2003
title Del diseño de objetos al diseño de procesos (From the design of objects to the design of processes)
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary The universe of the pixel has broadened the dimension of the design concept. Within the digital environment, we can no longer continue thinking in terms of "project" and "object" in a traditional manner. The digital object responds to new requirements. From the emergence of virtual environments, the "object" must be considered as a communication process. The object has reached a new dimension, no longer from a solid material structure, but as a dynamic organization in constant change. The possibility of showing reality through models within the digital environment may only be understood as an approach, partial and relative, to the complex processes of information organization.
keywords Design, digital technology, digital society
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_53045 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002