CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 281

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id avocaad_2003_06
id avocaad_2003_06
authors Arturo F. Montagu and Juan Pablo Cieri
year 2003
title Urbamedia - Development of an urban database of fragments of some Argentinian and Latin-American cities using digital technology
source LOCAL VALUES in a NETWORKED DESIGN WORLD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Stellingwerff, Martijn and Verbeke, Johan (Eds.), (2004) DUP Science - Delft University Press, ISBN 90-407-2507-1.
summary The proposal of "Urbamedia" is to undertake the development of 3D virtual and interactive models of historical areas of Latin-American cities. The selected zone is the "Mayo Avenue" including the "Mayo Square", an historical place of the city of Buenos Aires, Argentina; this project is financed by the National Agency of Scientific and Technological Development of Argentina and the University of Buenos Aires.We are presenting the first experimental model of the "Mayo Square" that has been developed at ABACUS, Department of Architecture & Building Aids Computer Unit, University of Strathclyde UK. combined with a system analysis of urban activities using the “Atlas.ti” CAQDAS software.This particular use of the “Atlas.ti” software is under experimental applications to this type of urban analysis procedures; allowed us the possibility to analysed a set of activities by means of graph theory as result of a series of interviews to the people working in the area. We are also looking to include historical areas of three cities: Mar del Plata, Rosario and Santa Fe (Argentina) and eventually other cities from Latin América as Rio de Janeiro and Habana.Due that ABACUS has a strong experience in city modelling plus the powerful software and hardware used there, we must develop a VRML customized menu to be adapted to our low cost PC equipment. The 3D model will be used mainly in urban design simulation procedures and the idea is to extend to other type of simulations of the environmental parameters.
keywords Architecture, Local values, Globalisation, Computer Aided Architectural Design
series AVOCAAD
email
last changed 2006/01/16 21:38

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia03_044
id acadia03_044
authors Bermúdez, Julio and Foresti, Stefano
year 2003
title Information Visualization
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, p. 346
doi https://doi.org/10.52842/conf.acadia.2003.x.p5s
summary Digital visualization addresses representational challenges from within and without architecture. ‘Disciplinary’ digital visualization is used to explore, understand and communicate architectural information associated with the production of buildings. 3D modeling, rendering, animation and VR as well as the power of digital media to permit the seamless integration of various data types are unleashing completely new ways to display architecture. As digital power continues to increase and get cheaper, portability and wi-fi networks take root, and visualization work becomes even more main stream, we can expect growing changes in the way the design process is conducted, buildings are presented and documented, and the public and 3rd party’s demands from professional services. This demands a more conscious research/pedagogies aimed at developing new representation conventions.
series ACADIA
email
last changed 2022/06/07 07:49

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia03_008
id acadia03_008
authors Cabrinha, Mark
year 2003
title Function Follows Form: 10 Sticks (and a Bench)
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 57-65
doi https://doi.org/10.52842/conf.acadia.2003.057
summary While the introduction of digital media in the design studio often emphasizes virtual realms, the effect of new fabrication technology on the architect brings the architect back to the realm of master-builder rather than distancing the architect from reality. While purely digital projects have pushed the development of form, they have also placed an emphasis on form over material. However, with the intention to physically build a project, the connections between process, form, and material become intertwined. The inception of this project also served as a clear reminder that the tools we use affect the way we think. This project began as a simple idea: how a column becomes animated to form an arch over time. The digitization of this idea took literally minutes in Maya. It was exported and further modeled in AutoCAD, and then rendered and reanimated in 3D Studio-Viz. This was a very brief, two-week introductory project, in a class on drafting and wood light-frame construction. It served to make a greater connection between digital media, the design process, analog drawing, and the role of craft and material.
series ACADIA
email
last changed 2022/06/07 07:54

_id c5c5
id c5c5
authors Calderon, C., Cavazza M. and Diaz, D.
year 2003
title A NEW APPROACH TO VIRTUAL DESIGN FOR SPATIAL CONFIGURATION PROBLEMS,
source 7th IEEE International Information Visualisation Conference, London, UK, 16-17 July 2003. http://www.graphicslink.demon.co.uk/IV03/
summary In this paper, we present a new framework for the use of Virtual Reality (VR) in engineering design for configuration applications. Traditional VR systems support the visual exploration of a design solution but do not assist the user in exploring alternative solutions based on domain knowledge. Extending previous work in the area of Intelligent Virtual Environment, we propose an intelligent configuration system based on constraint logic programming (CLP), integrated in a real-time 3D graphic environment. This type of integration facilitates the expression of design knowledge in the VE and enables the user to interactively solve and/or refine a spatial configuration problem. In the system described in this paper, the user can visually explore configurations, but his interaction with objects of the configuration problem triggers new cycles of constraint propagation from the modified configuration to produce a new compatible solution.
keywords Virtual Reality, Virtual Design
series other
type normal paper
email
last changed 2005/12/02 11:31

_id caadria2003_a7-1
id caadria2003_a7-1
authors Chantawit, D. and Hadikusumo, B.H.W.
year 2003
title Integrated 4d Cad and Construction Safety Planning Information for a Better Safety Management
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 891-904
doi https://doi.org/10.52842/conf.caadria.2003.891
summary Safety is an important element of project successes. In the conventional project management, safety planning, as a function, is separated from other functions, such as planning/scheduling function. This separation creates difficulties for engineers to analyze what, when, why and where a safety measure is needed to prevent accidents in a construction activity. Another problem occurs due to the conventional practice of representing project designs using two-dimensional (2D) drawings. In this practice, a user (e.g. an engineer) has to convert the 2D drawings into three-dimensional (3D) mental pictures, and this is a tedious task. If only converting this 2D drawing is a tedious task, combining these 2D drawings with safety planning creates more difficult tasks. In order to address the problems, this paper discusses our research in integrating construction scheduling and safety planning in a 4D environment.
series CAADRIA
last changed 2022/06/07 07:55

_id ecaade03_311_58_chen
id ecaade03_311_58_chen
authors Chen, G.-Y. M., Shih, C.-H. and Liu, Y.-T.
year 2003
title Realizing various urban spaces in Year 2050 Taiwan: Camera-matching in helicopter movement animations
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 311-314
doi https://doi.org/10.52842/conf.ecaade.2003.311
summary This paper combines the 3D dynamic camera-matching technology adapted from the movie industry with the computer animation of digitally designed model and the multimedia video on high altitude of helicopter will enable realer and more effective representation of the diversities in an urban space.
keywords Digital media, urban spaces, camera-matching, representation
series eCAADe
email
more http://www.arch.nctu.edu.tw
last changed 2022/06/07 07:55

_id cf2003_m_001
id cf2003_m_001
authors CHEVRIER, Christine and PERRIN, Jean Pierre
year 2003
title ModLum - Illumination Project Aided Design Tool
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 361-370
summary Illumination phenomena simulation is important for architectural project design and communication: simulation tools must assist efficiently the designer; results have to be reliable and realistic for the decision-makers. Indeed, it is very difficult, for a nonspecialist to imagine the result of an illumination from the light designer plans. Experience shows that the success of a photo-realistic simulation relies essentially on the choice of the light source characteristics and their correct positioning in the scene. This paper first presents the specificities of illumination projects (very large geometrical data bases enlightened by a large amount of light sources) and the difficulties of their set-up. Light arrangement requires tricky compositions, judicious choices and accurate studies. Currently there is no specific modeller for the handling of light sources as they are considered in radiosity software. Then we present the interactive tool we have developed, named ModLum, in order to set up light sources in a 3D architectural model in order to save time during the design step and simplify the source handling. ModLum specifications and principles are presented. Finally, an application is presented: the illumination project of two cloisters in Quito (Ecuador, South America).
keywords architecture, lighting, simulation
series CAAD Futures
last changed 2003/09/22 12:21

_id fd5c
id fd5c
authors Derix C and Simon C
year 2003
title Morphogenetic CA: 69’ 40’ 33 north
source Proceedings of the Generative Arts conference, Milan, 2003
summary We would like to present some recent work using cellular automata and agent modelling for the generative design of building configurations. The cellular automata is based on a 3d terrain model of a site (taken from the recent Europan competition) which is encoded with both topological and economic data, and agents that are light sensitive and which reconfigure the developing architecture by checking overshadowing and spatial occupation. The emergent pattern of development therefore results from an understanding of the programmatic and the spatial parameters of the task, and is intimately related to the site and its peculiarities.
keywords urban planning, cellular automata, agent modelling, solar performance, hierarchical massing
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 21:37

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id ecaade03_527_71_donath
id ecaade03_527_71_donath
authors Donath, Dirk and Weferling, Ulrich
year 2003
title Digital building surveying and planning Integrative approaches with commercial object-oriented CAAD systems
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 527-532
doi https://doi.org/10.52842/conf.ecaade.2003.527
summary As a result of growing activity in the field of renovation and building within existing built contexts, modern digital tools and methods are increasingly in demand. Support of the planning process means: the step-by-step capture of building-relevant information, a rule and parameter-based development of solutions and the combination of traditional and automated methods and technologies used for model creation (building surveying) and model transformation (planning). This article discusses general requirements and the results from our own research and development as well as illustrating how building surveying can already contribute to the planning process more effectively using currently available tools.
keywords Planning, Building surveying, Process model, CAAD, IT-planning tools, renovation, 3D-model, information systems
series eCAADe
email
more http://infar.architektur.uni-weimar.de
last changed 2022/06/07 07:55

_id archidna_thesis
id archidna_thesis
authors Doo Young Kwon
year 2003
title ARCHIDNA: A GENREATIVE SYSTEM FOR SHAPE CONFIGURATONS
source University of Washington, Design Machine Group
summary his thesis concerns a new generation process for shape configurations using a set of operations. The approach derives from analyzing a particular design style and programming them into a computer. It discusses how generative CAD software can be developed that embodies a style and how this software can serve in the architectural design process as a computational design tool. The thesis proposes a prototype software system, ArchiDNA, to demonstrate the use of operations to generate drawings in a specific design style. ArchiDNA employs a set of operations to produce design drawings of shape configuration in Peter Eisenman's style for the Biocentrum building plan in Frankfurt, Germany. The principles of form generation are defined as a set of operations. ArchiDNA generates 2D and 3D drawings similar to Eisenmans plan and model for the Biocentrum building. The extension system of ArchiDNA, called ArchiDNA++, supports designers in defining operations and generating shape configurations. Designers can enter and edit their own shapes for the generation process and also control the parameters and attributes for shape operations. Thus, designers can manage the generation process and explore using ArchiDNA++, to generate shape configurations that are consistent with their own drawing style.
series thesis:MSc
type normal paper
email
last changed 2004/06/02 19:40

_id cf2003_m_097
id cf2003_m_097
authors FRÖST, Peter
year 2003
title A Real Time 3D Environment for Collaborative Design
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 203-212
summary By setting up collaborative design processes in architecture it is possible to considerably improve the integration of customer needs and ideas into the programming phase of a building project. Our design process includes active collaboration between customers, users and other stakeholders as well as the use of virtual environments in conceptual design. The output from the process is treated as visualised input to the architectural programming. The work presented focuses on developing digital tools to support this collaborative design dialogue. We have developed an extremely “easy to use” digital modelling tool called “ForeSite Designer”. The tool enables the users to build layouts of prefabricated components on a building site in 2D. This 2D layout can then instantly be exported to a lit-up real time 3D environment in the computer game “Half-Life.” ForeSite Designer has been used in a several design events with different settings. This paper presents the tool and one project where it was utilized. The results show that ForeSite Designer can promote dialogue and collaborative design work among the participants. We have also found that it is important how the virtual environment and its components are visually designed in order to support the dialogue and collaborative design work.
keywords collaboration, customer, real time, virtual environment
series CAAD Futures
last changed 2003/09/22 12:21

_id 47b3
authors Gruen, A., Steidler F. and Wang, X.
year 2003
title Generation and visualization of 3D-city and facility models using CyberCity Modeler (CC-Modeler)
source CORP 2003, Vienna University of Technology, 25.2.-28.2.2003 [Proceedings on CD-Rom]
summary The efficient generation of data for 3-D city models and their handling in Spatial Information Systems has become feasible. The derivation of this data from aerial and terrestrial images with semi-automated techniques constitutes the most powerful tool currently available to fulfill this task. Semi-automated object extraction has become a viable concept for the generation of 3-D city models. CyberCity-Modeler (CC-Modeler) has been developed with the aim of creating not only buildings, but also other objects pertaining to a city model efficiently and with a high degree of flexibility concerning the level of detail. In its commercial implementation, CCModeler has been confronted with a number of user requirements which needed to be observed. This led to some extensions in functionality, which are addressed in this paper: Geometrical regularization of buildings, editing functions for topology adjustment, integration of facades and other vertical walls and modeling of overhanging roofs. These extensions of the original concept make CyberCity-Modeler an even more powerful tool for 3-D city modeling.
series other
last changed 2003/03/11 20:39

_id 2004_024
id 2004_024
authors Holmgren, S., Rüdiger, B., Storgaard, K. and Tournay, B.
year 2004
title The Electronic Neighbourhood - A New Urban Space
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 24-34
doi https://doi.org/10.52842/conf.ecaade.2004.024
summary During the event Cultural Market Days on 23 and 24 August 2003 at Noerrebro Park in Copenhagen, visitors could also enter the marketplace from their home via the Internet, as a digital 3D model had been constructed that showed the marketplace with all its information booths and activities. This virtual marketplace functioned as an extension of the urban space, allowing you to take part in the flow of information, activities and experiences that were offered in the marketplace. And this just by a click on the Internet address: http://www.e-kvarter.dk. Furthermore at certain times of the day you could chat with people from some of the many working groups of the urban regeneration project in Noerrebro. The digital 3D model is similar to the marketplace, but it creates its own universe in the green surroundings of Noerrebro Park. And now, when the Cultural Market Days are finished and the booths and people have gone, the Electronic Marketplace still remains on the Internet, with a potential for developing a new public space for information, dialogue and cooperation between the actors of the urban regeneration project. This paper presents the results of a 3-year research project, The Electronic Neighbourhood (2000-2004). Researchers have developed and tested a digital model of the urban area and other digital tools for supporting the dialogue and cooperation between professionals and citizens in an urban regeneration project in Copenhagen. The Danish Agency for Enterprise and Housing, the Ministry for Refugees, Immigration and Integration and Copenhagen Municipality have financed the research, which is planned to be published 2004. The results can also be followed on the Internet www.e-kvarter.dk.
keywords 3D Modelling; Virtual Environments; Design Process; Human-Computer Interaction; Collaborative Design; Urban Planning
series eCAADe
last changed 2022/06/07 07:50

_id cf2009_poster_09
id cf2009_poster_09
authors Hsu, Yin-Cheng
year 2009
title Lego Free-Form? Towards a Modularized Free-Form Construction
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary Design Media is the tool designers use for concept realization (Schon and Wiggins, 1992; Liu, 1996). Design thinking of designers is deeply effected by the media they tend to use (Zevi, 1981; Liu, 1996; Lim, 2003). Historically, architecture is influenced by the design media that were available within that era (Liu, 1996; Porter and Neale, 2000; Smith, 2004). From the 2D plans first used in ancient egypt, to the 3D physical models that came about during the Renaissance period, architecture reflects the media used for design. When breakthroughs in CAD/CAM technologies were brought to the world in the twentieth century, new possibilities opened up for architects.
keywords CAD/CAM free-form construction, modularization
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id ijac20031202
id ijac20031202
authors Jeng, Taysheng; Lee, Chia-Hsun
year 2003
title Tangible Design Media: Toward An Interactive CAD Platform
source International Journal of Architectural Computing vol. 1 - no. 2
summary This paper presents an interactive CAD platform that uses a tangible user interface to visualize and modify 3D geometry through manipulation of physical artifacts.The tangible user interface attempts to move away from the commonly used non-intuitive desktop CAD environment to a 3D CAD environment that more accurately mimics traditional desktop drawing and pin-up situations. An important goal is to reduce the apparent complexity of CAD user interfaces and reduce the cognitive load on designers. Opportunities for extending tangible design media toward an interactive CAD platform are discussed.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 14HOMELOGIN (you are user _anon_669134 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002