CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 27

_id avocaad_2003_17
id avocaad_2003_17
authors Anna Maria Chrabin, Jaroslaw Szewczyk and Herman Neuckermans
year 2003
title A Critical Evaluation of Early Stages Software in its Capacity of Coping with Contextual Issues
source LOCAL VALUES in a NETWORKED DESIGN WORLD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Stellingwerff, Martijn and Verbeke, Johan (Eds.), (2004) DUP Science - Delft University Press, ISBN 90-407-2507-1.
summary In this paper we analyse critically early design stages software in its capacity of coping with contextual data at large (i.e. representing cultural, aesthetical context, etc.). We identified 5 categories of early stages software: geometry based graphic editors, evaluation architectural software, generative and shape-grammar based systems, evolutionary systems and other systems. Calling the object under creation during of the early stages a CAD conceptual model, we will investigate to what extend this software allows the architect to experience and represent the context in which a design is situated. Especially we will focus on its capacity to allow interaction, playful interaction on our way to the design. Designers, and particularly architects, interact with the local context similarly to interacting in a game: the context influences the users’ decisions, surprises them and causes permanent changes to their ways of thinking. On the other hand, architects permanently shape and reshape the context, and reduce the context to a protean point of reference. Such behaviour characterises creative thinking that is crucial for the early stage of design. The investigation led us to the conclusions that the effective interactivity with the context needs simple rules, a plain interface and data reduced as simple as possible, especially when interaction with the context is performed during the early stages of a design process. The findings can be used in organising computer environments for early-stage design.
keywords Architecture, Local values, Globalisation, Computer Aided Architectural Design
series AVOCAAD
email
last changed 2006/01/16 21:38

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade03_187_11_brandy
id ecaade03_187_11_brandy
authors Brady, Darlene A.
year 2003
title IDEATION: METAPHORICAL EXPLORATIONS AND DIGITAL MEDIA
doi https://doi.org/10.52842/conf.ecaade.2003.187
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 187-190
summary Metaphor in architecture involves two distinct paradigms of ideation and visualization: architecture as a virtual metaphor of an idea and virtual models of architecture as metaphors of an architectural intention or vision. Digital media is a powerful vehicle for the generation and expression of both paradigms. The dominant applications of digital media in architecture are drafting and computer simulations as virtual constructs of an architectural intention. This paper will focus on the us e of digital media and ideation, a design process which uses metaphor to link idea and form early in the design process.
keywords Design creativity, Design process, Generative design, Innovation, Precedents
series eCAADe
email
more http://www.archi-textures.com
last changed 2022/06/07 07:54

_id caadria2003_b5-2
id caadria2003_b5-2
authors Caldas, Luisa G.
year 2003
title Shape Generation Using Pareto Genetic Algorithms Integrating Conflicting Design Objectives in Low-Energy Architecture
doi https://doi.org/10.52842/conf.caadria.2003.681
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 681-694
summary The Generative Design System [GDS] presented in this paper was developed to assist designers in researching low-energy architecture solutions. The GDS has the capability to evolve architectural forms that are energy-efficient, while complying to design intentions expressed by the architect, and responding to conflicting objectives. To achieve this evolutionary development, the system integrates a search and optimization method [Genetic Algorithm], a building energy simulation software [DOE2.1E], and Pareto multicriteria optimization techniques. The GDS adaptively generates populations of alternative solutions, from an initial schematic layout and a set of rules and constraints designed by the architect to encode design intentions. The two conflicting objective functions considered in this paper are maximizing daylighting use, and minimizing energy consumption for conditioning the building. The GDS generated an uniformly sampled, continuous Pareto front, from which six points were visualized in terms of the proposed architectural solutions.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac20031402
id ijac20031402
authors Caldas, Luisa G.; Norford, Leslie K.
year 2003
title Shape Generation Using Pareto Genetic Algorithms: Integrating Conflicting Design Objectives in Low-Energy Architecture
source International Journal of Architectural Computing vol. 1 - no. 4
summary The Generative Design System [GDS] presented in this paper was developed to assist designers in researching low-energy architecture solutions. The GDS has the capability to evolve architectural forms that are energy-efficient, while complying to design intentions expressed by the architect and responding to conflicting objectives. To achieve this evolutionary development, the system integrates a search and optimization method [Genetic Algorithm], building energy simulation software [DOE2.1E], and Pareto multicriteria optimization techniques. The GDS adaptively generates populations of alternative solutions, from an initial schematic layout and a set of rules and constraints designed by the architect to encode design intentions. The two conflicting objective functions considered in this paper are maximizing daylighting use and minimizing energy consumption for conditioning the building. The GDS generated an uniformly sampled, continuous Pareto front, from which six points were visualized in terms of the proposed architectural solutions.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id acadia03_003
id acadia03_003
authors Chang, W. and Woodbury, R.
year 2003
title Undo Reinterpreted
doi https://doi.org/10.52842/conf.acadia.2003.019
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 19-27
summary The class of operations known as “undo” has proven to be a valuable addition to most professional work tools. In practice though, its use is frustrating: undo often undoes too much. Its essential informal semantics are that it returns the user to a prior state by recapitulating all intervening states. Why not give the user greater control over which aspects of a design to undo? An alternative is to seek to reuse prior work in any logically-coherent pattern—user input is a precious commodity. The area of generative systems provides insights in a search for alternatives to undo, in particular that prior user and system actions can be changed and reused in new contexts. We contingently introduce a concept we label as design promotions to describe system designs that demonstrate a tight coupling between interactive authorship and system-led generation, that treat past user actions as valuable intentional statements, and that treat alternative user choices as first-class objects of concern. In practice these three properties emphasize reuse. We briefly survey the current state of undo-like operations and potential candidates for implementing design promotions strategies. Through examples, we demonstrate approaches to realizing undo-like operations over specific representations, especially that of constructive solid geometry.
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade03_465_118_chase
id ecaade03_465_118_chase
authors Chase, Scott C.
year 2003
title Revisiting the use of generative design tools in the early stages of design education
doi https://doi.org/10.52842/conf.ecaade.2003.465
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 465-472
summary Computer based generative design tools can help elucidate the nature of design, but are often restricted in their scope due to implementation issues. These ‘toy’ applications are often developed as proof of concept software, but have the potential to serve as teaching aids in early design education. A number of such tools will be described and the case made for their continued use in design education.
keywords Generative design tools, design education, computer programming, parametric variation, shape grammars
series eCAADe
email
more http://homepages.strath.ac.uk/~cas01101
last changed 2022/06/07 07:55

_id cf2003_m_105
id cf2003_m_105
authors CHASE, Scott C.
year 2003
title A Prototype Generative System for Construction Details Combining FBS Descriptions with Design Grammars
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 413-422
summary A formal framework for redesign based upon Function-Behaviour-Structure models and design grammars is described. A proposed application domain is for the design and redesign of construction assemblies. GDL object technology is illustrated as a candidate tool for implementation.
keywords construction, grammar, geometric description, redesign
series CAAD Futures
email
last changed 2003/09/22 12:21

_id fd5c
id fd5c
authors Derix C and Simon C
year 2003
title Morphogenetic CA: 69’ 40’ 33 north
source Proceedings of the Generative Arts conference, Milan, 2003
summary We would like to present some recent work using cellular automata and agent modelling for the generative design of building configurations. The cellular automata is based on a 3d terrain model of a site (taken from the recent Europan competition) which is encoded with both topological and economic data, and agents that are light sensitive and which reconfigure the developing architecture by checking overshadowing and spatial occupation. The emergent pattern of development therefore results from an understanding of the programmatic and the spatial parameters of the task, and is intimately related to the site and its peculiarities.
keywords urban planning, cellular automata, agent modelling, solar performance, hierarchical massing
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 21:37

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id archidna_thesis
id archidna_thesis
authors Doo Young Kwon
year 2003
title ARCHIDNA: A GENREATIVE SYSTEM FOR SHAPE CONFIGURATONS
source University of Washington, Design Machine Group
summary his thesis concerns a new generation process for shape configurations using a set of operations. The approach derives from analyzing a particular design style and programming them into a computer. It discusses how generative CAD software can be developed that embodies a style and how this software can serve in the architectural design process as a computational design tool. The thesis proposes a prototype software system, ArchiDNA, to demonstrate the use of operations to generate drawings in a specific design style. ArchiDNA employs a set of operations to produce design drawings of shape configuration in Peter Eisenman's style for the Biocentrum building plan in Frankfurt, Germany. The principles of form generation are defined as a set of operations. ArchiDNA generates 2D and 3D drawings similar to Eisenmans plan and model for the Biocentrum building. The extension system of ArchiDNA, called ArchiDNA++, supports designers in defining operations and generating shape configurations. Designers can enter and edit their own shapes for the generation process and also control the parameters and attributes for shape operations. Thus, designers can manage the generation process and explore using ArchiDNA++, to generate shape configurations that are consistent with their own drawing style.
series thesis:MSc
type normal paper
email
last changed 2004/06/02 19:40

_id cf2003_m_005
id cf2003_m_005
authors FISCHER, T., BURRY, M. and FRAZER, J.
year 2003
title How to Plant a Subway System
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 403-412
summary We speculate on a possible CAAD future that deploys and extends paradigms of natural growth and cellular development to an extent that would allow the planting and growth of man-made structures. This approach is based on the translation and expression of digital data structures into artificial physical form and the building of structures by decentral means. In such a scenario, generative and evolutionary architecture could seamlessly blend into building construction. As a discussion of as yet unavailable future technologies and methodologies the proposed remains at a “sketchy” level and must largely limit itself to preliminary and speculative considerations. In order to restrain the scope of this paper to the area of building design and construction, we focus on subway development and discuss possible cellular approaches to this particular field emphasizing aspects of functional aesthetics. We encourage the reader to take this example as a point of departure only, to generalise our explanations and to apply them to other building types. We support our discussion with findings made in software simulations of humandesigned cellular growth processes.
keywords cellular, evolutionary, morphogenesis, subway
series CAAD Futures
email
last changed 2003/09/22 12:21

_id ecaade03_441_16_fischer
id ecaade03_441_16_fischer
authors Fischer, T., Burry, M. and Frazer, J.
year 2003
title Triangulation of Generative Form for Parametric Design and Rapid Prototyping
doi https://doi.org/10.52842/conf.ecaade.2003.441
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 441-448
summary In this paper we discuss recent developments in the ongoing implementation of a toolkit for developmental generative design and form finding. We examine tissues of face-centered cubically close-packed voxel cells and topologically related structures for the possibility of 3D data conversion and of rapid prototyping applications. We also demonstrate how generative and parametric design can be integrated in order to enhance design flexibility and control.
keywords Parametric design, digital morphogenesis, cellular expression, geometry triangulation
series eCAADe
email
more http://www.sial.rmit.edu.au
last changed 2022/06/07 07:50

_id ecaade03_473_175_flanagan_neu
id ecaade03_473_175_flanagan_neu
authors Flanagan, Robert H.
year 2003
title Generative Logic in Digital Design
doi https://doi.org/10.52842/conf.ecaade.2003.473
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 473-484
summary This exploration of early-stage, architectural design pedagogy is in essence, a record of an ongoing transformation underway in architecture, from its practice in the art of geometry of space to its practice in the art of geometry of space-time. A selected series of student experiments, from 1992 to the present, illustrate a progression in architectural theory, from Pythagorean concepts of mathematics and geometry, to the symbolic representation of space and non-linear time in film. The dimensional expansion of space, from xyz to xyz+t (time), represents a tactical and strategic opportunity to incorporate multisensory design variables in architectural practice, as well as in its pedagogy.
keywords Generative; process; derivative; logic; systemic
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia03_036
id acadia03_036
authors Gerzso, J. Michael
year 2003
title On the Limitations of Shape Grammars: Comments on Aaron Fleisher’s Article “Grammatical Architecture?”
doi https://doi.org/10.52842/conf.acadia.2003.279
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 279-287
summary Shape grammars were introduced by Gips and Stiny in 1972. Since then, there have been many articles and books written by them and their associates. In 1992, Aaron Fleisher, a professor at the School of Planning, MIT, wrote a critique of their work in an article titled “Grammatical Architecture?” published in the journal Environment and Planning B. According to him, Gips, Stiny and later Mitchell, propose a hypothesis that states that shape grammars are presumed to represent knowledge of architectural form, that grammars are “formable,” and that there is a visual correspondence to verbal grammar. The strong version of “the hypothesis requires that an architectural form be equivalent to a grammar.” Fleisher considers these hypotheses unsustainable, and argues his case by analyzing the differences between language, and architecture, and by dealing with the concepts of lexicons, syntax and semantics. He concludes by stating that architectural design is negotiated in two modalities: the verbal and the visual, and that equivalences are not at issue; they do not exist. If there is such thing as a language for design, it would provide the means to maintain a discussion of the consequences in one mode, of the state and conditions of the other. Fleisher’s observations serve as the basis of this paper, a tribute to him, and also an opportunity to present an outline to an alternate approach or hypothesis to shape grammars, which is “nonlinguistic” but “generative,” in the sense that it uses production rules. A basic aspect of this hypothesis is that the only similarity between syntactic rules in language and some rules in architecture is that they are recursive.
series ACADIA
last changed 2022/06/07 07:51

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaade03_519_209_gruber
id ecaade03_519_209_gruber
authors Gruber, A., Hirschberg, U. and Dank, R.
year 2003
title Calculated Bananas: Defining a new introductory course in visual design for first year architecture students
doi https://doi.org/10.52842/conf.ecaade.2003.519
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 519-522
summary A novel introductory course in visual design is presented that combines the teaching of various subjects and skills around the development of digital fruit. – A mandatory subject for first year architecture students at Graz University of Technology, the course is jointly offered by two institutes and combines the teaching of hand sketching, descriptive geometry, computer aided design, generative algorithms, image processing, desktop and online publishing and networked collaboration. The ambitious pedagogy uses information technology to provide links and synergies between the different subjects. The digital fruit are developed in a collaborative environment that fosters the evolution of new kinds of forms and structures through exchanging and crossbreeding of CAAD data. The paper reports on the experiences gained during the first installment the course in which 130 students were enrolled.
keywords Creative collaboration: evolutionary processes; digital fruit; complex geometry; methods of representation.
series eCAADe
email
more http://ikg.tugraz.at/
last changed 2022/06/07 07:51

_id ecaade2010_233
id ecaade2010_233
authors Guerbuez, Esra; Cagdas, Guelen; Alacam, Sema
year 2010
title A Generative Design Model for Gaziantep’s Traditional Pattern
doi https://doi.org/10.52842/conf.ecaade.2010.841
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.841-849
summary This paper describes a research to develop new urban designalternatives for Gaziantep by using fractal based approaches. The aim of the research is not only generating new form alternatives but also considering the continuity of traditional architectural and urban pattern which faces deterioration. Within this study, it is intended to test the applicability of the fractal based generative approaches and explore the potential advantages. The method called CADaFED (Ediz, 2003) is updated to be used in one of the 3d modeling programs, 3DsMax scripting and it is used as an experimental tool in two-day student workshop. The working field is limited as Bey Neighbourhood in Gaziantep for its well-preserved architectural characteristics. In this paper, the outcomes of the student workshop will be evaluated and discussed in the sense of affirmative effects of fractal based design approaches.
wos WOS:000340629400090
keywords Generative design; Fractal based design; Computational architectural design; Traditional pattern
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia03_010
id acadia03_010
authors Kilian, Axel
year 2003
title Fabrication of Partially Double-Curved Surfaces out of Flat Sheet Material Through a 3D Puzzle Approach
doi https://doi.org/10.52842/conf.acadia.2003.075
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 75-83
summary The topic of this paper is the connection of digital modeling with generative programming and rapid prototyping, to produce physical sketch surface models. The physical surface models are assembled out of developable strips connected through a puzzle-like detail. The use of programming as a design approach allows the generation of connection details that corresponds to the rules of flat sheet rapid prototyping techniques of laser cutting and water jet cutting. With numerically controlled cutting, there is no need to keep the joint detail related to manually achievable forms or to apply a standardized dimension. This paper demonstrates the possibilities of programming to generate cutting geometries that adapt to the local surface properties. The larger perspective of the research approach is the question of how to formulate and capture design intention through programming. What influence does the use of generative modeling in combination with rapid prototyping have on the design language of physical objects?
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_438013 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002