CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 182

_id eaea2003_28-barchougova
id eaea2003_28-barchougova
authors Bartchougova, E. and Rochegova, N.
year 2004
title About Virtual Spatial Modeling in Architectural Education
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 138-142
summary The professional perception of the architectural space characterizes the most advanced level of the architect’s mastership. In the article the virtual modeling is regarded as an effective way of forming the professional perception of integrity of architectural space. Computer technologies bring together bi-dimensional and three-dimensional languages of modeling and thus they help the procedure of movement of consciousness from the plane to volumetric images and back to the visual and mobile. They help to carry out the level-by-level analysis of the multilevel structure of an architectural reality in the mode of active dialogue. The process of interaction of consciousness with the model becomes accessible to studying. There appears an opportunity to manage this process with the aim of forming perception.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id avocaad_2003_06
id avocaad_2003_06
authors Arturo F. Montagu and Juan Pablo Cieri
year 2003
title Urbamedia - Development of an urban database of fragments of some Argentinian and Latin-American cities using digital technology
source LOCAL VALUES in a NETWORKED DESIGN WORLD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Stellingwerff, Martijn and Verbeke, Johan (Eds.), (2004) DUP Science - Delft University Press, ISBN 90-407-2507-1.
summary The proposal of "Urbamedia" is to undertake the development of 3D virtual and interactive models of historical areas of Latin-American cities. The selected zone is the "Mayo Avenue" including the "Mayo Square", an historical place of the city of Buenos Aires, Argentina; this project is financed by the National Agency of Scientific and Technological Development of Argentina and the University of Buenos Aires.We are presenting the first experimental model of the "Mayo Square" that has been developed at ABACUS, Department of Architecture & Building Aids Computer Unit, University of Strathclyde UK. combined with a system analysis of urban activities using the “Atlas.ti” CAQDAS software.This particular use of the “Atlas.ti” software is under experimental applications to this type of urban analysis procedures; allowed us the possibility to analysed a set of activities by means of graph theory as result of a series of interviews to the people working in the area. We are also looking to include historical areas of three cities: Mar del Plata, Rosario and Santa Fe (Argentina) and eventually other cities from Latin América as Rio de Janeiro and Habana.Due that ABACUS has a strong experience in city modelling plus the powerful software and hardware used there, we must develop a VRML customized menu to be adapted to our low cost PC equipment. The 3D model will be used mainly in urban design simulation procedures and the idea is to extend to other type of simulations of the environmental parameters.
keywords Architecture, Local values, Globalisation, Computer Aided Architectural Design
series AVOCAAD
email
last changed 2006/01/16 21:38

_id acadia04_186
id acadia04_186
authors Bell, Bradley
year 2004
title Digital Tectonics: Structural Patterning of Surface Morphology
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 186-201
doi https://doi.org/10.52842/conf.acadia.2004.186
summary The computer in architectural design has shifted from its role as a merely representational device to that of a tool for instrumentalized simulation and fabrication. The desire to make buildings look like a rendering, or to produce photo-realistic images and walkthroughs has given way to an opening of the potentials of software to assist the designer with managing complex geometries, parametric organizational diagrams, structural analysis, and integrated building systems. Simulation has become the means by which virtual space becomes more than just a mirror of reality. It becomes the space within which different potential realities can be tested and evaluated before they are materially implemented. In architecture, information derived from material constraints to site conditions can be constantly fed into the computer models to provide an accurate update, which in turn introduces feedback into the overall design, and change can then be registered in the detail.
keywords surface, patterns, structure, CAD/CAM, fabrication
series ACADIA
email
last changed 2022/06/07 07:54

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id eaea2003_25-ws-breen
id eaea2003_25-ws-breen
authors Breen, J.
year 2004
title Towards a Virtual Design Media Museum. Identifying, Structuring and Presenting Design and (Re) Presentation Media Artifacts
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 122-132
summary Designing is largely a process of (inter)active imaging. The evolvement of a design concept from preliminary design proposal towards spatial and material environment generally follows an uncertain path through uncharted landscape; a journey of exploration which requires both rational and creative consideration, frequently involving the interchange of information within a design team and collaboration with representatives from different contributing disciplines. Designs are conceived, worked out and specified step by step (roughly speaking from ‘rough to fine’) in iterative design ‘loops’. All the time the designer tries to determine which ‘course’ should be taken, by considering reference material, by reflecting on conceptions developed previously and by generating specific options aimed at furthering the ‘concretisation’ of the end product. In the course of such a trajectory, visual information is continually being developed, selected, tested, and subsequently either discarded or perfected. From early times architects have been considered not only as knowledgeable ‘experts’ in the field of building as a craft, but also as ‘creative directors’ of such development processes. The architect should be capable of not only conjuring up visions of the future spatial and material form of the building, but also of conveying these to the other ‘actors’ involved in the initiation and building process. Such ‘sharing’ of information is necessary in order to generate sufficient understanding, consensus, enthusiasm, as well as means. To become more than ‘figments of the imagination’, the designer’s ideas need to be ‘pinned down’ (even if they are not yet entirely finished) and communicated by using some form of reliable – and preferably readable – ‘language’ for design development and communication.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id ddss2008-33
id ddss2008-33
authors Charlton, James A.; Bob Giddings and Margaret Horne
year 2008
title A survey of computer software for the urban designprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Urban design is concerned with the shape, the surface and the physical arrangement of all kinds of urban elements, the basic components that make up the built environment, at the level of buildings, spaces and human activities. It is also concerned with the non-visual aspects of the environment, such as noise, wind and temperature and humidity. The city square is a particular urban element which can take many forms and its geometrical relationships such as maximum dimensions, ratio of width to length and building height to length have been analysed for centuries (Alberti 1475), (Vitruvius 1550), (Sitte 1889), (Corbett 2004). Within the current urban design process there are increasing examples of three dimensional computer representations which allow the user to experience a visual sense of the geometry of city squares in an urban landscape. Computer-aided design and Virtual Reality technologies have recently contributed to this visual assessment, but there have been limited attempts at 3D computer representations which allow the user to experience a greater sense of the urban space. This paper will describe a survey of computer tools which could support a more holistic approach to urban design and which could be used to simulate a number of urban texture and urban quality aspects. It will provide a systematic overview of currently available software that could support the simulation of building density, height, colour and style as well as conditions relating to noise, shading, heat, natural and artificial light. It will describe a methodology for the selection and filtering of appropriate computer applications and offer an initial evaluation of these tools for the analysis and representation of the three-dimensional geometry, urban texture and urban quality of city centre spaces. The paper is structured to include an introduction to the design criteria relating to city centre spaces which underpins this research. Next the systematic review of computer software will be described, and selected tools will undergo initial evaluation. Finally conclusions will be drawn and areas for future research identified.
keywords Urban design, Software identification, 3D modelling, Pedestrian modelling, Wind modelling, Noise mapping, Thermal comfort, VR Engine
series DDSS
last changed 2008/09/01 17:06

_id 0131
id 0131
authors Chiarella, Mauro
year 2004
title GEOMETRY AND ARCHITECTURE: NURBS, DESIGN AND CONSTRUCTION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 135-139.
summary Geometry regarded as a tool for understanding is perhaps the part of Mathematics which is the most intuitive, concrete and linked to reality. From its roots as a tool to describe and measure shapes, geometry as ‘the space science’ , has grown towards a theory of ideas and methods by means of which it is possible to build and study idealised models, not only from the physical world but also from the real world. In graphic architecture thought, geometry usually appears as an instrumental support for project speculation. Geometric procedures are presented as representational resources for the graphic testing of reflection and for the exposition of ideas in order to build a logical order as regards representation and formal prefiguration. The fast rise of computing in the last decades has made it possible for architects to work massively and in a graphic and intuitive way with mathematical representations of tridimensional geometry, such as the NURBS . These organic surfaces of free shapes defined by vectorial curves have allowed access to a rapid generation of complex shapes with a minumum amount of data and of specific knowledge.

The great development of modelling achieved by the digital media and the limitations in the technical and building areas and in the existence of materials which are coherent with the resultant shapes reveal a considerable distance between the systems of ideation and simulation characteristic of the computing era and the analogous systems of production inherited from the slow industrial development. This distance has been shortened by CAD/CAM systems, which are, however, not very accessible to the architectural field. If we incorporate to the development of these divergent media the limitations which are distinctive of the material resources and procedures of the existent local technology, the aforementioned distance seems even greater.

Assuming the metaphor of living at the threshold of two ages (industrial-computing, analogical-digital, material-virtual) and the challenge of the new conceptual and operational tools in our field, we work in the mixture, with no exclusions or substitutions, proposing (by means of the development of informational complements) some alternatives of work to approach the issue under discussion from the Architecture Workshop.

keywords Geometry, Design, NURBS, Unfolding, Pedagogy
series other
type normal paper
email
last changed 2005/04/07 12:51

_id ddss2004_d-291
id ddss2004_d-291
authors Hensen, J.L.M.
year 2004
title Towards More Effective Use of Building Performance Simulation in Design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 291-306
summary This paper discusses some issues which hinder effective use of building performance simulation in building design, and some approaches towards better and more efficient use of this important but underutilized technology. In particular, the paper discusses the issues of quality assurance, the relative slow software developments and the limited use (usability) of building performance simulation mainly during the final stages of the building design process.
keywords Building Performance Simulation, Design Support
series DDSS
last changed 2004/07/03 22:13

_id 113caadria2004
id 113caadria2004
authors Hong-Sheng Chen
year 2004
title Case-Based Simulation As a Technique for Assisting Architectural Design
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 189-198
doi https://doi.org/10.52842/conf.caadria.2004.189
summary In this research, I propose a case-based simulation method for experimenting with a set of models aimed at analyzing the behavior of a dynamic system. Owing to the assistance of CBRWorks4 software, this idea is successfully tested and implemented on the Internet. A set of evacuation simulations, which model complex human behavior in a building in certain emergency situations, leads to some discoveries and conclusions.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20032105
id ijac20032105
authors Kolarevic, Branko
year 2004
title Back to the Future: Performative Architecture
source International Journal of Architectural Computing vol. 2 - no. 1
summary The paper addresses performative architecture as an emerging design paradigm in which building performance, broadly understood, becomes a guiding design principle. It traces the origins of this approach to design to Tom Maver's visionary work in early seventies, discusses the inadequacy of existing building performance simulation tools in conceptual design, and proposes the development of software that can provide dynamic processes of formation based on specific performance objectives.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ddss2004_ra-193
id ddss2004_ra-193
authors Ohgai, A., Y. Gohnai, S. Ikaruga, M. Murakami, and K. Watanabe
year 2004
title Japan Cellular Automata Modeling for Fire Spreading as a Tool to Aid CommunityBased Planning for Disaster Mitigation
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 193-209
summary As a tool to support collaboration in community-based planning for disaster mitigation in Japanese old wooden built-up areas, we attempt to develop a fire spreading simulation model incorporated a fire fighting activity using Cellular Automata (CA). The proposed model can deal with the process of fire spreading in a building that traditional models can not represent. Whether or not fire can spread is based on a stochastic calculation process to reproduce uncertain fire spreading. The errors caused by the stochastic factor are analyzed by carrying out simulation two or more times under the same condition. Moreover, the reproductivity of the model is examined by comparing simulation results with actual fire records.
keywords Community-Based Planning for Disaster Mitigation, Fire Spreading, Fire Fighting Activity, Cellular Automata Modeling, Planning Support Tool
series DDSS
last changed 2004/07/03 22:13

_id eaea2003_08-ohno
id eaea2003_08-ohno
authors Ohno, R., Soeda, M. and Nakashima, K.
year 2004
title The Effectiveness of Design Guideline Regulations for Improving Streetscapes
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 21-27
summary Municipal governments or developers make design guidelines to create harmonious streetscapes in new towns. The regulations, however, are often based on arbitrary decisions without any empirical research. The present study employed a visual simulation system to test the effects of such physical features of the buildings as color, height, flatness of the building façade and its recess from the street on pedestrians’ impressions of the place. Thirty subjects were asked to rate their impressions of “order”, “simple”, and to evaluate the atmosphere after experiencing the simulated scenes. The results revealed some relations between the physical features and the pedestrians’ responses.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id sigradi2004_216
id sigradi2004_216
authors Pablo C. Grazziotin; Benamy Turkienicz; Luciano Sclovsky; Carla M. D. S. Freitas
year 2004
title Cityzoom - A tool for the visualization of the impact of urban regulations
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary Visualization has been used for many years as an important way of presenting architectural design and projects. However, beyond design, planning urban areas requires the analysis of different factors. Urban regulations are planning tools used to control and/or stimulate changes in the urban structure and to reproduce a certain level of quality of the urban milieu. Land area, built area, plot rate, average building height, and other important attributes can be easily obtained from the geometric objects in the city model or explicitly associated to them. This paper presents a system, CityZoom, which integrates several performance tools that allow the simulation of different attributes related to a planned or existing city. These attributes are shown in different ways either as tables of attribute values estimated from model evaluation, or 3D scenarios where the user can navigate and observe realistic shadows and daylighting estimation based on the concept of solar envelope.
series SIGRADI
email
last changed 2016/03/10 09:57

_id ijac20032202
id ijac20032202
authors Sarawgi, Tina
year 2004
title Determining the Suitability of Computer-Aided Daylight Simulation Method in the Design Process
source International Journal of Architectural Computing vol. 2 - no. 2
summary The successful use of daylight in a building requiresthat the associated forms and devices be conceived asan integral part of the architectural design. Thepopular methods of simulation for daylighting design:manual methods, physical scale model and computergraphics based rendering do not provide a robustmodel for daylighting decision-making during thedesign process due to their individual limitations. Therecent advances in computer-aided design andrendering compel another look at visually simulatingdaylight. This paper discusses a project undertaken totest a computer-aided daylight simulation program’saccuracy and ability to allow quick iterative daylightexplorations, essential to any design decision-makingprocess. Real buildings with their existing complexitiesare selected as case studies. The outcomes arediscussed and recommendations for future daylightsimulation software programs to be suitable in thedesign process are suggested.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id sigradi2004_310
id sigradi2004_310
authors Sharad Sharma; James A. Turner
year 2004
title An object oriented approach to simulating agent-based behavior
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary In this paper, we present an object-oriented approach for simulating agent-based egress behavior. The tool can be used when planners or designers need to assess the implications of their design or planning decisions. The tool is a web-based application that is being developed using standard protocols and technologies such as HTTP, HTML, and Java. It also demonstrates the effect of new building designs by simulating human evacuation behavior and relates the behavior of people. The existing models to describe the behavior of crowds usually deal with macroscopic variables like the average speed or the flow. Our aim is to model crowds as a malleable, moving masses, hoping that a more refined simulation might be achieved by considering each avatars behavior.
keywords Agent based simulation, Egress behavior
series SIGRADI
email
last changed 2016/03/10 10:00

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddss2004_d-141
id ddss2004_d-141
authors Tabak, V., B. de Vries, and J. Dijkstra
year 2004
title User Behaviour Modelling
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 141-156
summary The aim of the proposed project is to develop methods for the simulation of space utilisation. Up to now no methods for building performance evaluation are available which involve the occupants of the building. Instead, assumptions are made about people’s movement through space and their responses to the environment. These assumptions are input for important design decisions (e.g. capacity of elevators, width of corridors, escape routing) sophisticated calculations (e.g. cooling and lighting calculations) and simulations (e.g. airflow simulation, evacuation simulation). Reliable data on human movement are very scarce and can be valuable input to research in other research areas. New computer technologies allow for dynamic simulations that will provide insight into the building to be built. The research project builds upon existing methods that need to be tailored and/or extended to apply them to the building domain and to support real-time simulation.
keywords Building Simulation, Decision Support Systems, User Behaviour, Petri-nets, Activity Based Modelling
series DDSS
last changed 2004/07/03 22:13

_id 2004_586
id 2004_586
authors Voigt, A., Martens, B. and Linzer, H.
year 2004
title City Simulator - A Multi-dimensional VR-Simulation Environment
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 586-592
doi https://doi.org/10.52842/conf.ecaade.2004.586
summary Whether in splendid rural isolation or in an urban area, settlement and building structures always are exposed to the public. Questions as to the future design of our vital space basically always concern the public and thus call for a great deal of discussion. Launching a well-balanced debate between all those involved in the planning and design process requires clear exemplification of urban-spatial visions by means of simulation. A simulation device - called “City Simulator” - suited to conveying the multitude of spatial relations within the urban configuration and for developing urban-spatial ideas would fulfil such expectations. The complexity of the information required in this context can be coped with effectively by means of computer-aided simulation techniques focusing on digital city models. Thus the implementation of a “City Simulator” may be regarded as a decisive tool for the purpose. As those involved in the process normally consider themselves absolute novices within the context of complex planning processes, the simulator will to some extent act as a “translation machine”. This paper is based on a project proposal which has been submitted by the authors aimed at the acquisition of a “City Simulator” at Vienna University of Technology in the near future.
keywords 3D City Models; Simulation; Virtual Reality; Visualization; Communication
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2018.2.011
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 9HOMELOGIN (you are user _anon_551730 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002