CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 546

_id 309caadria2004
id 309caadria2004
authors Sato Reika, Yeo Wookhyun, Yuda Yasuyuki, Oh Sooyeon, Kaga Atsuko, Sasada Tsuyoshi
year 2004
title Dynamic Visual Reference System (Nez System) for Assisting Environmental Design
doi https://doi.org/10.52842/conf.caadria.2004.483
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 483-492
summary In a design process, it is necessary to recognize the circumference environment, analyze human activities in the environment, and consider the locations and space where the activities occur. Dynamic Visual Reference System(Nez system) is a useful reference tool for these purposes in environmental design. The system enables the direct visualization of various proposed reference multimedia data or analysis of human activity and thus the thorough comprehension of the client. The architect and the client may therefore communicate with each other at ease, which in turn facilitates the reflection and creativity of the environmental designer.
series CAADRIA
email
last changed 2022/06/07 07:57

_id 2004_515
id 2004_515
authors Tsou, J-Y., Lam, S., Jie, H. and Yucai, X.
year 2004
title Performance Based Planning for High Density Urban Habitation
doi https://doi.org/10.52842/conf.ecaade.2004.515
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 515-522
summary In Hong Kong, about 22% of the total territory‘s area can be classified as built-up area and potential development area. Only 6% of this area is allocated to district and local open space for the 6.8 million populations, i.e. 2m2 per person. Sensible planning of the limited area to enhance the livability and environmental quality hence become a challenging issue for quality urban living of the mass population. However, considering the dynamic relationship of the different performance criteria in the hyper-dense urban environment, one needs to assess various environmental criteria to carry out a balanced planning. Meanwhile, effective tools to evaluate and manage the inter-relationship of these criteria, or indexes for integrated issues indication are not readily available that a reasonable planning is not always easy to achieve. In this paper, the „openness ratio“ concept is introduced for open space planning to provide an integrated index for early stage of planning and design. The new index is expected to provide a comprehensive rating system in considering the environmental performance of open area. It helps to highlight the potential problems in planning or site layout and support the integrated thinking of the four key components: visual sensitivity, urban wind, urban noise and solar heat gain. The concept has shown to be feasible on simple massing study which is applicable in the preliminary planning stage.
keywords Design Process; Performance Simulation; Design Methodology; Urban Planning
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
doi https://doi.org/10.52842/conf.acadia.2008.072
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id 113caadria2004
id 113caadria2004
authors Hong-Sheng Chen
year 2004
title Case-Based Simulation As a Technique for Assisting Architectural Design
doi https://doi.org/10.52842/conf.caadria.2004.189
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 189-198
summary In this research, I propose a case-based simulation method for experimenting with a set of models aimed at analyzing the behavior of a dynamic system. Owing to the assistance of CBRWorks4 software, this idea is successfully tested and implemented on the Internet. A set of evacuation simulations, which model complex human behavior in a building in certain emergency situations, leads to some discoveries and conclusions.
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
doi https://doi.org/10.52842/conf.acadia.2007.284
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id 502caadria2004
id 502caadria2004
authors Kirsty A. Beilharz
year 2004
title Designing Generative Sound for Responsive 3D Digital Environment Interaction
doi https://doi.org/10.52842/conf.caadria.2004.741
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 741-758
summary This paper examines three key areas of responsive sound interaction in 3D Digital Environments: designing generative sound that derives its composition and relevance from social and physical human interaction within a digital environment; the relation of sonic structure to the digital visual and spatial experience; and responsive, reactive real time sound generation activated by environmental conditions and human behaviours. The primary purposes for responsive sound design are: (1) to provide navigational cues supporting way-finding and spatial orientation; and (2) to provide realtime generative environmental sound that reflects social behaviour in a way that is meaningful and recognisable. The applied contexts for navigational cues and environmental generative sound include online (multi-user), synchronous Virtual Environments and Digital Installation Spaces (e.g. intelligent rooms, virtual reality and immersive environments). Outcomes of responsive sound design include: a trigger system of aural alerts, warnings and guidance; a computational system for generating sound in real time activated by spatial location and social interaction; and an audio (non-visual) tool aiding spatial orientation and way-finding interaction in 3D immersive Digital Environments.
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddss2004_ra-177
id ddss2004_ra-177
authors Ballas, D., R. Kingston, and J. Stillwell
year 2004
title Using a Spatial Microsimulation Decision Support System for Policy Scenario Analysis
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 177-191
summary This paper discusses the potential of a spatial microsimulation-based decision support system for policy analysis. The system can be used to describe current conditions and issues in neighbourhoods, predict future trends in the composition and health of neighbourhoods and conduct modelling and predictive analysis to measure the likely impact of policy interventions at the local level. A large dynamic spatial micro-simulation model is being constructed for the population of Leeds (approximately 715,000 individuals) based on spatial microsimulation techniques in conjunction with a range of data, including 2001 Census data for Output Areas and sample data from the British Household Panel Survey. The project has three main aims as follows: (i) to develop a static microsimulation model to describe current conditions in Leeds; (ii) to enable the performance of ‘What if?’ analysis on a range of policy scenarios; and (iii) to develop a dynamic microsimulation model to predict future conditions in Leeds under different policy scenarios. The paper reports progress in meeting the above aims and outlines the associated difficulties and data issues. One of the significant advantages of the spatial microsimulation approach adopted by this project is that it enables the user to query any combination of variables that is deemed desirable for policy analysis. The paper will illustrate the software tool being developed in the context of this project that is capable of carrying out queries of this type and of mapping their results. The decision support tool is being developed to support policy-makers concerned with urban regeneration and neighbourhood renewal.
keywords Spatial Microsimulation, Spatial Decision Support Systems, Geotools
series DDSS
last changed 2004/07/03 22:13

_id sigradi2004_357
id sigradi2004_357
authors Carlos Calderon and Nicholas Worley
year 2004
title An automatic real-time camera control engine for the exploration of architectural designs
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper is concerned with the use of real-time camera engines in architectural virtual environments as a method of enhancing the user.s experience and as a way of facilitating the understanding of architectural concepts. This paper reports on an initial prototype of a real-time cinematic control camera engine for dynamic virtual environments in the architectural domain. The paper discusses the potential of the system to convey architectural concepts using well known architectural concepts such as rhythm and proposes a series of future improvements to address those limitations. Keywords: virtual environments, camera control, design process, filmaking.
series SIGRADI
email
last changed 2016/03/10 09:48

_id 301caadria2004
id 301caadria2004
authors Chia-Yu Wang, Teng-Wen Chang
year 2004
title Information Sharing for Small Design Studios - Ubiquitous Information Flow Approaches
doi https://doi.org/10.52842/conf.caadria.2004.391
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 391-404
summary While balancing the feasibility of management as well as design quality, design offices with strong focus on design are getting smaller and more compact. Mobility and dynamic information flow are two key issues for information sharing in design studio. In this research, we discussions about these concepts of ubiquitous computing, workflow and information model on small design studio. The goal of this research is trying to use available digital equipments as a ubiquitous device for sharing information dynamically no matter where and when they are. Use such digital equipments as well as server to store information and improve human interaction to achieve better interaction between human and technology. For these issues, we analyze three components of our system—the types of information, the interactive behaviors using roles as a metaphor, and ubiquitous devices that are available for small design studio. Within this research, we propose a system call Ubiquitous Information Flow Tool (UIFO) based on Java and Web technology for testing and reifying the concepts of ubiquitous information flow.
series CAADRIA
email
last changed 2022/06/07 07:55

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id ddss2004_d-127
id ddss2004_d-127
authors Dijkstra, J., H.J.P. Timmermans, and B. de Vries
year 2004
title Data Requirements for the Amanda Model System
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-1554, p. 127-139
summary The Amanda model system uses a multi-agent approach in an attempt to simulate pedestrian dynamic destination and route choice. Data collecting efforts are needed to calibrate the model. This paper discusses these data requirements.
keywords Multi-Agent Systems, Activity Modelling, Pedestrian Behaviour
series DDSS
last changed 2004/07/03 22:13

_id ecaade2021_297
id ecaade2021_297
authors Guida, George, Tian, Runjia and Dong, Yuebin
year 2021
title Multimodal Virtual Experience for Design Schools in the Immersive Web
doi https://doi.org/10.52842/conf.ecaade.2021.1.415
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 415-424
summary The COVID-19 pandemic has made most schools, universities, and gathering spaces fully virtual. Commonly used communication platforms such as Zoom, Skype, and Microsoft Teams are limited in recreating physical interactions and offer mostly static interfaces with limited occasions for spontaneous encounters. This project creates a space that seeks to address this issue, first through the digitization of familiar physical spaces, and then through their augmentation via WebXR technologies[1]. A gamification strategy is adopted, where users can virtually learn, collaborate and socialize through personalized avatars within a dynamic and multi-sensorial digital environment. In this paper, we present a completed prototype that is currently being tested at the Harvard Graduate School of Design. The school of architecture has been digitized and experientially augmented thanks to an asymmetrical system that offers rich modalities of interaction through different platforms. The project builds upon the wide experiential potential of digital platforms, otherwise not possible in reality, and implements a customized multi-modal user interface (Reeves et al. 2004).
keywords WebXR; Virtual Reality; Human Computer Interaction; Gamification; User Interface
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2004_paper15
id ascaad2004_paper15
authors Mallasi, Z.
year 2004
title Identification and Visualisation of Construction Activities’ Workspace Conflicts Utilising 4D CAD/VR Tools
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary This work addresses the problem arising on all construction sites: the occurrence of workspace interference between construction activities. From a site space planning context, this problem can lead to an inevitable roadblock to the progress of the scheduled construction operations. In real situations, when the spatial congestions occur, they could reduce productivity of workers sharing the same workspace and may cause health and safety hazard issues. The aim of this paper is on presenting a computer-based method and developed tool to assist site managers in the assignment and identification of workspace conflicts. The author focuses on the concept of ‘visualising space competition’ between the construction activities. The concept is based on a unique representation of the dynamic behaviour of activity workspace in 3D space and time. An innovative computer-based tool dubbed PECASO (Patterns Execution and Critical Analysis of Site-space Organisation) has been developed. The emerging technique of 4D (3D + time) visualisation has been chosen to yield an interesting 4D space planning and visualisation tool. A multi-criteria function for measuring the severity of the workspace congestions is designed, embedding the spatial and schedule related criteria. The paper evaluates the PECASO approach in order to minimise the workspace congestions, using a real case study. The paper concludes that the PECASO approach reduces the number of competing workspaces and the conflicting volumes between occupied workspace, which in turn produces better assessment to the execution strategy for a given project schedule. The system proves to be a promising tool for 4D space planning; in that it introduces a new way of communicating the programme of work.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddss2004_d-33
id ddss2004_d-33
authors Pelizaro, C., T.A. Arentze, and H.J.P. Timmermans
year 2004
title A Spatial Decision Support System for Provision and Monitoring of Urban Green Space
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 33-48
summary A spatial decision support system for the planning, design and maintenance of urban green space is presented. The objective of the system under development is to assist local authorities and green space administrators to strategically enhance the supply of urban greening with the right type and variety of green space that maximizes public welfare. The system is being developed starting from a modelling perspective and GIS functionalities are added conform the needed analysis and subroutines within the system. The system has been written in the C++ Borland Builder 5 programming environment. GIS capabilities and dynamic mapping are added using MapObjects 2.0.
keywords Design & Decision Support Systems, Integrated Urban Models, Urban Planning, Urban Green Space
series DDSS
last changed 2004/07/03 22:13

_id sigradi2004_329
id sigradi2004_329
authors Ravi S. Srinivasan; Ali M. Malkawi
year 2004
title The use of learning algorithms for real-time immersive data visualization in buildings
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary Computational Fluid Dynamic (CFD) simulations are used to predict indoor thermal environments and assess their response to specific internal/external conditions. Although computing power has increased exponentially in the past decade, CFD simulations are time consuming and their prediction results cannot be used for real-time immersive visualization in buildings. A method that can bypass the time consuming simulations and generate .acceptable. results will allow such visualization to be constructed. This paper discusses a project that utilizes Artificial Neural Network (ANN) as a learning algorithm to predict post-processed CFD data to ensure rapid data visualization. The technique has been integrated with an immersive Augmented Reality (AR) system to visualize CFD results in buildings. ANN was also evaluated against a linear regression model. Both models were tested and validated with datasets to determine their degree of accuracy. Initial tests, conducted to evaluate the user.s experience of the system, indicated satisfactory results.
series SIGRADI
email
last changed 2016/03/10 09:58

_id ascaad2004_paper16
id ascaad2004_paper16
authors Hassan, R.; K. Jorgensen
year 2004
title Computer Visualizations in Planning
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary A wide range of visualizations have been developed and implemented as tools for urban simulations and visual impact assessment. These include: plans, diagrams, elevations, perspective sketches, renderings, modified photographs (photo renderings and photomontages), slide projections, scale models, movies, videotapes and computer graphics. In the last decade, graphical computer applications have proven to be an increasingly supportive tool in visualization and manipulation of graphical material. This study presents the state of the art of computer visualization in planning. More specifically, the use of web-based computerized visualizations for landscape visual simulation, with the aim to develop a system of visualization techniques as an aid to communicating planning and design scenarios for historically important landscapes and urban places, with particular attention to the city of Nablus in Palestine. This has led to the evaluation of possibilities and potentials of computer use in this field, and to the definition of the visual problems and challenges of the city of Nablus. This study will argue what extra one can draw from computerized visualizations, what is likely to be its impact on future planning and design research, and what this visualization experience really means for historical important locations as in Nablus. The study demonstrates that computerized visualizations can be a powerful tool in representing a cityscape in three-dimensions from different angels. Visualizations will allow better understanding of the components of the city, its landscapes, city features and the process of change. In this way it may provide new and better platforms for public participation in planning.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 510caadria2004
id 510caadria2004
authors Ju-Yeon Kim & Hyun-Soo Lee
year 2004
title Developing a Color Adaptive VR Interior Design System Based on Psychophsiological Responses
doi https://doi.org/10.52842/conf.caadria.2004.857
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 857-870
summary This research utilizes vision-based affective recognition and sensing technologies, which are tested in order to interpret what emotional moods people experience with visual spatial images; these tests help to automatically provide feedback on the natural ways to manipulate affective intelligent communication. That is, the primary objective of this research is to realize an adaptable architectural virtual reality (VR) model whose color attributes can be changed dynamically according to the identified emotional state of the user. Eventually, this research addresses how to capture a specific user’s emotional states through the system and use it for modifying an architectural VR model, mainly for its color adaptation. In the applicability process, this system proposes towards user oriented smart environment such as the colors of an interior space are dynamically changed according to a characteristic affective response of a user.
series CAADRIA
email
last changed 2022/06/07 07:52

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
title MATHEMATICS AND DESIGN EDUCATION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
email
last changed 2005/04/07 15:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_803828 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002