CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 571

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
doi https://doi.org/10.52842/conf.acadia.2004.088
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
doi https://doi.org/10.52842/conf.acadia.2011.138
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id 2004_174
id 2004_174
authors Duarte, José P., Caldas, Luisa G. and Rocha, João
year 2004
title Free-form Ceramics - Design and Production of Complex Architectural Forms with Ceramic Elements
doi https://doi.org/10.52842/conf.ecaade.2004.174
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 174-183
summary This paper describes a studio experiment developed with the aim of exploring the design and fabrication of complex architectural forms using ceramic elements. History has examples of double-sided curved forms built in ceramics. Such examples would not fulfill contemporary functional and aesthetic principles, neither would they be feasible or cost-effective considering current construction standards. There are recent examples of such forms built in other materials. These examples are difficult to emulate when ceramics is concerned, as they imply the fabrication of unique parts and sophisticated assembly techniques. Creating a double-curved surface in ceramics thus seems a difficult task. There are, however, advantages to such a formulation of design problems. They prompt the questioning of traditional wisdom, the rejection of accepted types, and the raising of interesting questions. What are the design strategies that should be followed when creating ceramic free-forms? What is the design media required to design them? And what are the techniques needed to fabricate and construct them? These are the questions investigated in the design project pursued jointly by students at an American and a Portuguese school, in collaboration with a professional research center and a ceramics factory. The students tested various possibilities, and in the process learned about state-of-art design and production techniques. The final projects are very expressive of their investigations and include a twisted glass tunnel, large-scale ceramic ‘bubbles,’ a rotated-tile wall, and a load-bearing wall system.
keywords Design Education: Rapid Prototyping; Remote Collaboration; Ceramics; Innovation; Free-Form Architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
doi https://doi.org/10.52842/conf.acadia.2008.072
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia04_076
id acadia04_076
authors Hanna, Sean
year 2004
title Modularity and Flexibility at the Small Scale: Evolving Continuous Material Variation with Stereolithography
doi https://doi.org/10.52842/conf.acadia.2004.076
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 76-87
summary In this paper, we introduce a technique by which the internal material properties of an object can be optimised at a microstructural level (5x10-5m) to counteract the forces that are applied to it. These can then be fabricated using the rapid prototyping method of stere­olithography. The proposed technique is analogous to principles of mass customization and takes advantage of a flexible module to cre­ate complex structures in a manner that is computationally efficient and effective. The process is two-staged, in which a genetic algorithm evolves the topology of the microstructure and a second algorithm incorporating Finite Element Analysis then optimises the geometry. The examples shown are designed specifically for the fabrication tech­nique, but the method and general principles are applicable to struc­tural problems at any scale.
keywords genetic algorithm, rapid prototyping, stereolithography, materials
series ACADIA
email
last changed 2022/06/07 07:50

_id acadia04_220
id acadia04_220
authors Harfmann, Anton
year 2004
title Implementation of Component Based Design: A Pedagogical and Actual Case Study
doi https://doi.org/10.52842/conf.acadia.2004.220
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 220-229
summary This paper explores pedagogical and practical ramifications of implementing the component-based design paradigm through the actual construction process of a simple wood frame house for Habitat for Humanity. The house was digitally-modeled as part of an elective construction class, then physically constructed by students and faculty of the College of DAAP at the University of Cincinnati as part of a community service exercise. The digital model and a detailed database of individual components were mined in order to explore and exploit the complete and accurate electronic modeling of building, prior to actual construction.
keywords Product Design, Component Design, Single Model, Virtual Construction
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia04_066
id acadia04_066
authors Harrop, Patrick
year 2004
title AGENTS OF RISK: EMBEDDING RESISTANCE IN ARCHITECTURAL PRODUCTION
doi https://doi.org/10.52842/conf.acadia.2004.066
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 66-75
summary In its most common usage, the term fabrication calls to mind industry and production. For architecture, fabrication and industry have been defining aspects of modern practice. While dependant on the dimensional and temporal standards of industry, modernists were preoccupied with the limitations imposed by the generic restrictions of mass production. When we make, instead of predetermining action, we discover a map of engagement. We play by challenging and resisting material. It in turn, reveals an intentional resistance that provokes yet another challenge, and on and on and on. In fact, craft excels in the less-than-ideal situations. When challenged by aberrant materials, geometry and craft are forced into innovative discovery: a knot of reaction wood within an otherwise homogeneous surface would force a novel adaptation of geometry generated by the imperfection. How, then, do we integrate the indeterminate cycle of craft and invention into a design process transformed by tools entirely reliant on prediction and the (virtual and real) homogeneity of materials? Is it reasonable to introduce an element of risk into the realm of digital fabrication equivalent to the auto-generative sabotage of Signwave’s Auto Illustrator? This paper reflects on the nature of material craft in the realm of digital fabrication. It will look both at the history and the contemporary opportunity of generative art and automata and their subversive (yet essential) relationship to the making of architecture.
series ACADIA
type normal paper
last changed 2022/06/07 07:49

_id acadia04_230
id acadia04_230
authors Johnson, Scott
year 2004
title Linking Analysis and Architectural Data: Why It's Harder than We Thought
doi https://doi.org/10.52842/conf.acadia.2004.230
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 230-243
summary This paper considers high-level, architecturally oriented repre­sentations, like Building Information Models (BIMs), and examines the difficulty of integrating analyses with such representations. Structural analysis is selected as a sample analysis domain, and is examined by integrating a structural analysis into the test implementation of a program that utilizes architecturally oriented elements. A fundamental problem is found to be that architecturally oriented elements are inappropriate for structural analysis. Methods for sequentially analyzing architectural elements are discussed, but are found to be inadequate. Accurate analysis requires analyzing the entire structure at once using a representation specific to structural analysis. A method for generating a structural representation based on the architectural representation is discussed, but the process is not simple. The process is complicated by the fact that architectural elements and structural elements do not correspond in a one-to-one or even a one-to-many manner. An accurate structural representation may even require semi-fictitious elements not corresponding to actual physical components. These findings are believed to be true for other analysis domains, as well.
keywords Representations, Building Information Models, Proteus, structural analysis, finite elements
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia04_110
id acadia04_110
authors Kilian, Axel
year 2004
title Linking Digital Hanging Chain Models to Fabrication
doi https://doi.org/10.52842/conf.acadia.2004.110
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 110-125
summary The paper traces the development of a digital hanging chain modeler in Java inspired by Antonio Gaudi’s physical hanging chain models. More importantly, it demonstrates how fabrication schemas for physical mockups of the digitally simulated hanging chain can be linked to the real time form finding simulation. Fabrication output is an integral part of the iterative process and not a post-design process. The current implementation is still limited and currently requires programming for reconfiguration. The paper proposes the link of form-finding and fabrication finding and lays out several examples and first steps of how to do so.
keywords form finding, simulation, fabrication
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2008_081
id ecaade2008_081
authors LaBelle, Guillaum; Nembrini, Julien; Huang , Jeffrey
year 2008
title Simulation-Driven Design System
doi https://doi.org/10.52842/conf.ecaade.2008.469
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 469-476
summary This paper presents a design process efficiently involving parametric design, realistic physical simulation and rapid-prototyping fabrication for contextual shape adaptation. This case study focuses on lighting simulation for the specific problem of solar energy harvesting. Inspired by the phototropic mechanism, the ability of plants to grow according to the availability of light, an innovative design technique is defined, taking its root in the morphogenetic design school [Hensel, 2004].
keywords Parametric,Simulation, Generative Design, CAD, Phototropism
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia04_176
id acadia04_176
authors Loukissas, Yanni and Sass, Lawrence
year 2004
title RULEBUILDING (3D PRINTING: OPERATORS, CONSTRAINTS, SCRIPTS)
doi https://doi.org/10.52842/conf.acadia.2004.176
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 176-185
summary 3-D printers alter the speed, cost, complexity, and consistency with which physical architecture models can be crafted. If architects are to harness the unique abilities of this modeling process, it is necessary to find a complementary means of conceptualizing designs and generating the geometric data necessary for 3-D printing. This paper introduces a novel combination of 3-D printing and scripting through three examples of architectural surface models. In these examples, VBScript is used to write generative scripts for execution within the Rhinoceros modeling environment. The scripts produce digital geometric models which, in turn, are exported to a Z-Corp 3-D printer. The merits of this methodology are demonstrated, in one example, through models of an architectural surface composed of light-modulating conical components. The design intent in this example is a grid of responsive components which ride on a complex curved surface and steer toward a light. The written script is an explicit representation of this intention. Methods in the script use external parameters to generate a digital geometric model. The form of the subsequent printed model is calculated as a function of the initial parameters, two boundary splines and a vector indicating the orientation of the light. By varying these parameters, a set of design options can be generated and 3-D printed for comparison. The combination of scripting and 3-D printing allows complex design intentions to be managed in a concise, sharable format and modeled iteratively without manual intervention.
keywords Generative, Scripting, Rapid Prototyping, 3-D Printing, Architectural Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia04_202
id acadia04_202
authors Matsushima, Shiro
year 2004
title Technology-mediated process: case study--MIT Stata Center
doi https://doi.org/10.52842/conf.acadia.2004.202
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 202-219
summary Gehry Partners’ (GP) sculptural approach to tectonic form, with its dramatic curves, complex geometry, and idiosyncratic application of materials, seems to have redefined the limits of architecture. The development of a strong formal vocabulary has been achieved by advanced use of information technologies, including CATIA, which allows translation among various tectonic representations, both in physical and digital forms. In addition, the nature of the office has much to do with other changes in the project delivery system, such as the relationships with associate architect, manufacturers, and subcontractors. This paper discusses how new technology changes the design and fabrication process, which has evolved from GP’s milestone project, Guggenheim Museum Bilbao, and how organizational efforts to involve the industry in the design process facilitate the project. Unlike at Bilbao, in the newly-completed Stata Center GP produced all the construction documents. This shift coincided with a gradual change in which GP was becoming involved in the technical aspects of their projects much earlier in the design process. Therefore they had to invest in new working relationships with the construction team, including fabricators, manufacturers, and contractors. The approach of Gehry and his team suggests that architectural practice can be liberated from its conventional arrangements. Although it is still evolving, Gehry has achieved a holistically integrated organizational system where the architect has far more direct interaction with all aspects of design and fabrication.
keywords design technology, fabrication process, communication protocol
series ACADIA
email
last changed 2022/06/07 07:58

_id 2004_292
id 2004_292
authors Modeen, Thomas
year 2004
title Using Solid Freeform Fabrication for the Conceptualization and Corporeal Actualization of Architecture
doi https://doi.org/10.52842/conf.ecaade.2004.292
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 292-301
summary This paper forms an update to the paper presented ar eCAADe 2003, in Graz. It is a summary of a project which aim is to suggest an alternate methodology for utilizing additive Solid Freeform Fabrication (more commonly known as Rapid Prototyping), for the conceptualization and fabrication of design and architecture. It plans to do so by establishing a methodology that is innate and a direct reflection of the additive SFF production process. The project also aims to address the seemingly divisive discrepancy between the process of digitally conceiving a design and the intrinsically somatic way we perceive it. Whereas the paper in Graz introduced the conceptual foundations and the taxonomy of the project, the aim in this years paper is to present some of the realized designs and discuss, in brief, how what has been learnt could be furthered as the project proceeds. The three designs described in more detail in the paper, all catalyzed by a specific sensory notion, would have been very difficult, if not impossible, to fabricate by any other means than additive Solid Freeform Fabrication.
keywords Architecture, Design, Solid Freefrom Fabrication, Senses
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

_id acadia04_162
id acadia04_162
authors Perez, Santiago R.
year 2004
title The Synthetic Sublime
doi https://doi.org/10.52842/conf.acadia.2004.162
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 162-175
summary The distinction between the artificial and the natural has been increasingly challenged as a result of advances in genetics, microbiol¬ogy, and robotics. Beginning with the molecular assemblage of organic systems into complex micro-surfaces and structures, and expanding into the realm of the macro landscape, our understanding of the term Synthetic must be revised. What is the relationship between the component (or part) and the whole, when confronted with the Synthetic? Digitally mediated fabrication technologies, combined with a renewed interest in topology and (bio)logical form, serve to challenge our preconceived notions of space and form. This inquiry will attempt to explore the relationship between traditional assemblies produced by hand, and the production of complex forms through digital rapid prototyping. The impact of D'Arcy Thompson's On Growth and Form will be considered both as a historical juncture and a contemporary source of knowledge for the exploration of new assemblages inspired by topology and biology. In particular, the organic micro-surfaces depicted in France Bourély's Hidden Beauty will be explored, in comparison with the mathematical development of organic forms inspired by Periodic Minimal Surfaces. The analysis of emerging forms and assemblages based on the notion of the Synthetic will be compared with the Organic, and considered within the context of twentieth century art and sculpture. An attempt will be made to establish new modes of inquiry for combining digital and physical explorations of space and form, influenced by advances in micro-scale structures, complex surfaces, and the history of organic form in art.
keywords landscape, form, surface, assemblage
series ACADIA
email
last changed 2022/06/07 08:00

_id 5cf4
id 5cf4
authors Barrionuevo, Luis F.
year 2004
title LOS "SPIROSPACES"
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 179-187.
summary This paper deals with “Spirospaces”. These are a conversion to the third dimension of the two dimensional geometric entities called “Spirolaterals”.

Abelson, Harold, diSessa and Andera (1968) gave the first rules concerning Spirolaterals. To obtain a Spirolateral from a set of straight lines, the first of them must be one unit long and the following must be incremented one unit at each step, at the same time that they turn in a constant direction. Odds (1973) establish the variation of the rotation direction, either to the left or the right. However, he did not give a mathematical relation able to calculate open Spirolaterals. Krawczyk (2001) developed a computer program that generates Spirolaterals following the method suggested by Abelson. These are Spirolaterals obtained by enumeration without a predictive mathematical formula. Krawczyc went farther proposing Spirolaterals based in curved lines. He pointed out that there are a variety of spirolateral forms that have architectural potentiality. Following this, the architectural potentiality of Spirolaterals is the basis of this paper.

To take advantage of that potentiality a computer program was implemented to generate spatial configurations based in Spirolaterals. When a third dimension is given to the Spirolaterals they become Spirospaces. These new entities need spatial and design parameters to be useful for architectural purposes. Barrionuevo and Borsetti (2001) gave results about that work establishing the concept of Spirospaces.

The aim of this paper is to describe a work directed to improve rules and procedures concerning Spirospaces. It is expected that these procedures governed by the proposed rules can be employed as tools during the early steps in the architectural design process.

In this work some aspects concerning Spirospaces are considered. First, Spirolaterals are presented as the predecessors of Spirospaces. Second, Spirospaces are defined, together with their structural parameters. Architectural modeling is studied at the light of two special elements of the Spirospaces: Interstitial spaces and Object spaces. Next, a computer program is presented as the appropriate tool to model configurations having architectural potentiality. Finally, the results obtained running the computer program are analyzed to determine their possible use as architectural forms. Several graphic illustrations are presented showing steps going from the exploration of spatial alternatives to the selection of a specific configuration to be developed.

It is expected that the described computer program could be employed as a design aid tool. As the operation of the program generates a variety of spaces able to dwell architectural objects, it eases the search of configurations suitable to specific functions. The results obtained have the possibility of being exported to computer graphic applications able to add materials, lights and cameras.

keywords Spirolaterals, Spirospaces, architectural spaces, interstitial spaces, objectual spaces
series other
type normal paper
email
last changed 2005/04/07 15:34

_id 2005_771
id 2005_771
authors Gavrilou, Evelyn, Bourdakis, Vassilis and Charitos, Dimitris
year 2005
title Documenting the Spatial Design of an Interactive Multisensory Urban Installation
doi https://doi.org/10.52842/conf.ecaade.2005.771
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 771-778
summary The paper documents the design and implementation of an interactive multi-sensory environment (DETOUR) created by the interdisciplinary group VE_Design for an international open-air exhibition in Athens, Greece during the summer of 2004. The paper describes the creative process followed throughout the project and registers how computers, sensors and effectors have been utilised to either facilitate the creation of electronically mediated experiences or support the design. The architectural concept of the multi-sensory installation is analyzed in relation to its potential for creating communicative experiences as well as addressing physical form simulations. Notions such as ephemeral structures, parasites, social space, game as art and communication are discussed. The body – space interaction is investigated, enabling the team to elaborate on a modular construction. Finally, the impact of the work is discussed on the basis of recorded observations by visitors.
keywords Interactive Multi-Sensory Environment; Ephemeral Space; Public Art;Embodied Spatial Experience; Simulation of Physical Form.
series eCAADe
email
last changed 2022/06/07 07:51

_id 1410
id 1410
authors Muñoz, Patricia; López Coronel, Juan
year 2004
title CONTINUITY IN SPATIAL SURFACES FOR INDUSTRIAL DESIGN
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 97-104.
summary The purpose of this enquiry was to verify the way in which CAD systems and their tools for visual surfaces analysis interact with morphological knowledge in the determination of continuity in products of industrial design. We acknowledge that geometrical knowledge is necessary but not enough for working with this attribute of form in everyday objects, where cultural factors are involved. Geometry establishes a progressive range of continuity of surfaces that involves the concepts of position, tangency and curvature. In product design we find different degrees of continuity that not necessarily follow this idea of increment. What is understood as discontinuous in products in most cases is geometrically continuous. The control of smoothness in the shape of objects, is influenced by the way in which the form was created and by the different communicational, functional and technological elements that identify a product of industrial design. Subtlety in the suggestion of form, by means of the regulation its continuity, is what turns it suggestive through design. We consider that the development of the geometry of digital drawing systems in three dimensions should be an integrating process, where CAD developers and designers work closer in order to potentiate both activities.
series other
type normal paper
email
last changed 2005/04/07 12:50

_id ijac20042304
id ijac20042304
authors Scaletsky, Celso Carnos
year 2004
title The Kaléidoscope System to Organize Architectural Design References
source International Journal of Architectural Computing vol. 2 - no. 3, 351-369
summary The presentation of a new computer-based tool to assist architectural conception demands reflection on the process of creation itself. There is an articulation between typical conceptual procedures and computerized means. We chose one of these procedures: the utilization of external references (not necessarily architectural) to stimulate new design ideas. This is the basis for the experimental computational model "kaléidoscope", which is characterized as an open reference system for architectural design. There are two essential qualities for such a system: 1) The system should permit an individual interpretation and construction of the referential knowledge, considering that 2) references may proceed from fields other than architecture. The computational model begins with a reference, formed by the association of an image to concepts and / or texts. The concepts are graphically represented and organized in thematic thesauri. The "kaléidoscope" system includes several search and navigation modes, allowing access to references as a means to rouse new design ideas.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_175298 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002