CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id 2004_174
id 2004_174
authors Duarte, José P., Caldas, Luisa G. and Rocha, João
year 2004
title Free-form Ceramics - Design and Production of Complex Architectural Forms with Ceramic Elements
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 174-183
doi https://doi.org/10.52842/conf.ecaade.2004.174
summary This paper describes a studio experiment developed with the aim of exploring the design and fabrication of complex architectural forms using ceramic elements. History has examples of double-sided curved forms built in ceramics. Such examples would not fulfill contemporary functional and aesthetic principles, neither would they be feasible or cost-effective considering current construction standards. There are recent examples of such forms built in other materials. These examples are difficult to emulate when ceramics is concerned, as they imply the fabrication of unique parts and sophisticated assembly techniques. Creating a double-curved surface in ceramics thus seems a difficult task. There are, however, advantages to such a formulation of design problems. They prompt the questioning of traditional wisdom, the rejection of accepted types, and the raising of interesting questions. What are the design strategies that should be followed when creating ceramic free-forms? What is the design media required to design them? And what are the techniques needed to fabricate and construct them? These are the questions investigated in the design project pursued jointly by students at an American and a Portuguese school, in collaboration with a professional research center and a ceramics factory. The students tested various possibilities, and in the process learned about state-of-art design and production techniques. The final projects are very expressive of their investigations and include a twisted glass tunnel, large-scale ceramic ‘bubbles,’ a rotated-tile wall, and a load-bearing wall system.
keywords Design Education: Rapid Prototyping; Remote Collaboration; Ceramics; Innovation; Free-Form Architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id 316caadria2004
id 316caadria2004
authors Chor-Kheng Lim
year 2004
title A Revolution of the Design Process
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 571-583
doi https://doi.org/10.52842/conf.caadria.2004.571
summary Along with the development of computer technologies and CAD/CAM, digital tools are increasingly adapted in architectural design. Developed thus far, functions of digital tools are no long limited to two-dimensional drafting or final presentation; they have become tools that can assist design thinking. Because of the involvement of digital tools, the design process has been greatly affected; or, one may say that digital tools liberated the confines of forms and structuring of architectures. This research aims to explore the procedures in the design process using digital tools. In the conclusion, we found that in an attempt to abridge the gap between design ideas and actual implementation, the designer used the digital reality simulation function very frequently to assist in decision making, and in order to process more complex and freer forms, the designer relied on the 3D design environment to carry out his thinking process and amendments. In addition, the digital design process is mainly conducted through the methods of 1, 3D modeling, 2, Simulation, 3, Generation, and 4, Fabrication. The steps and methods in the digital design process are obviously different from the traditional ones, which focus mainly on mass-production of 2D drawings; therefore, it is certain that the new tools will change the outcome of the designs.
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2004_317
id sigradi2004_317
authors Christina Araujo Paim Cardoso
year 2004
title Formas arquitetônicas em ambiente computacional [Architectural Forms in a Computational Environment]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This article presents a proposal of analysis of the architectural formal production accomplished in computing environment, putting emphasis on the most recent experimental production found in specialized publications. This analysis shows how the introduction of the computing tools may interfere with the design process, mainly when it is the production of complex forms, non-conventional. Thus, besides the recent architectural production of several offices and / or architecture companies of international renown, architectural experiences which have been developed by architects since the introduction of the CAD systems in there production are also presented Next, it presents the possibilities of the three-dimensional modeling, by making an analysis of the current possibilities, the geometric and the procedural ones, putting enphasis on the modeling of splines, NURBS and metaballs, which proved to be appropriate for the architectural production of complex forms.
keywords CAD technology, design, three-dimensional modeling
series SIGRADI
email
last changed 2016/03/10 09:49

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia04_162
id acadia04_162
authors Perez, Santiago R.
year 2004
title The Synthetic Sublime
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 162-175
doi https://doi.org/10.52842/conf.acadia.2004.162
summary The distinction between the artificial and the natural has been increasingly challenged as a result of advances in genetics, microbiol¬ogy, and robotics. Beginning with the molecular assemblage of organic systems into complex micro-surfaces and structures, and expanding into the realm of the macro landscape, our understanding of the term Synthetic must be revised. What is the relationship between the component (or part) and the whole, when confronted with the Synthetic? Digitally mediated fabrication technologies, combined with a renewed interest in topology and (bio)logical form, serve to challenge our preconceived notions of space and form. This inquiry will attempt to explore the relationship between traditional assemblies produced by hand, and the production of complex forms through digital rapid prototyping. The impact of D'Arcy Thompson's On Growth and Form will be considered both as a historical juncture and a contemporary source of knowledge for the exploration of new assemblages inspired by topology and biology. In particular, the organic micro-surfaces depicted in France Bourély's Hidden Beauty will be explored, in comparison with the mathematical development of organic forms inspired by Periodic Minimal Surfaces. The analysis of emerging forms and assemblages based on the notion of the Synthetic will be compared with the Organic, and considered within the context of twentieth century art and sculpture. An attempt will be made to establish new modes of inquiry for combining digital and physical explorations of space and form, influenced by advances in micro-scale structures, complex surfaces, and the history of organic form in art.
keywords landscape, form, surface, assemblage
series ACADIA
email
last changed 2022/06/07 08:00

_id 2004_292
id 2004_292
authors Modeen, Thomas
year 2004
title Using Solid Freeform Fabrication for the Conceptualization and Corporeal Actualization of Architecture
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 292-301
doi https://doi.org/10.52842/conf.ecaade.2004.292
summary This paper forms an update to the paper presented ar eCAADe 2003, in Graz. It is a summary of a project which aim is to suggest an alternate methodology for utilizing additive Solid Freeform Fabrication (more commonly known as Rapid Prototyping), for the conceptualization and fabrication of design and architecture. It plans to do so by establishing a methodology that is innate and a direct reflection of the additive SFF production process. The project also aims to address the seemingly divisive discrepancy between the process of digitally conceiving a design and the intrinsically somatic way we perceive it. Whereas the paper in Graz introduced the conceptual foundations and the taxonomy of the project, the aim in this years paper is to present some of the realized designs and discuss, in brief, how what has been learnt could be furthered as the project proceeds. The three designs described in more detail in the paper, all catalyzed by a specific sensory notion, would have been very difficult, if not impossible, to fabricate by any other means than additive Solid Freeform Fabrication.
keywords Architecture, Design, Solid Freefrom Fabrication, Senses
series eCAADe
email
last changed 2022/06/07 07:58

_id ddss2004_ra-161
id ddss2004_ra-161
authors Bandini, S., S. Manzoni, and G. Vizzari
year 2004
title Crowd Modeling and Simulation
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 161-175
summary The paper introduces a Multi Agent Systems (MAS) approach to crowd modelling and simulation, based on the Situated Cellular Agents (SCA) model. This is a special class of Multilayered Multi Agent Situated System (MMASS), exploiting basic elements of Cellular Automata. In particular SCA model provides an explicit spatial representation and the definition of adjacency geometries, but also a concept of autonomous agent, provided with an internal architecture, an individual state and behaviour. The latter provides different means of space-mediated interaction among agents: synchronous, between adjacent agents, and asynchronous among at-a-distance entities. Heterogeneous entities may be modelled through the specification of different agent types, defining different behaviours and perceptive capabilities. After a brief description of the model, its application to simple crowd behaviours will be given, and an application providing the integration of a bidimensional simulator based on this model and a 3D modelling application (3D Studio) will also be described. The adoption of this kind of system allows the specification and simulation of an architectural design with reference to the behaviour of entities that will act in it. The system is also able to easily produce a realistic visualization of the simulation, in order to facilitate the evaluation of the design and the communication with involved decision-makers. In fact, while experts often require only abstract and analytical results deriving from a quantitative analysis of simulation results, other people involved in the decision-making process related to the design may be helped by qualitative aspects better represented by other forms of graphical visualization.
keywords Multi-Agent Systems, 3D modelling, Simulation
series DDSS
last changed 2004/07/03 22:13

_id 5cf4
id 5cf4
authors Barrionuevo, Luis F.
year 2004
title LOS "SPIROSPACES"
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 179-187.
summary This paper deals with “Spirospaces”. These are a conversion to the third dimension of the two dimensional geometric entities called “Spirolaterals”.

Abelson, Harold, diSessa and Andera (1968) gave the first rules concerning Spirolaterals. To obtain a Spirolateral from a set of straight lines, the first of them must be one unit long and the following must be incremented one unit at each step, at the same time that they turn in a constant direction. Odds (1973) establish the variation of the rotation direction, either to the left or the right. However, he did not give a mathematical relation able to calculate open Spirolaterals. Krawczyk (2001) developed a computer program that generates Spirolaterals following the method suggested by Abelson. These are Spirolaterals obtained by enumeration without a predictive mathematical formula. Krawczyc went farther proposing Spirolaterals based in curved lines. He pointed out that there are a variety of spirolateral forms that have architectural potentiality. Following this, the architectural potentiality of Spirolaterals is the basis of this paper.

To take advantage of that potentiality a computer program was implemented to generate spatial configurations based in Spirolaterals. When a third dimension is given to the Spirolaterals they become Spirospaces. These new entities need spatial and design parameters to be useful for architectural purposes. Barrionuevo and Borsetti (2001) gave results about that work establishing the concept of Spirospaces.

The aim of this paper is to describe a work directed to improve rules and procedures concerning Spirospaces. It is expected that these procedures governed by the proposed rules can be employed as tools during the early steps in the architectural design process.

In this work some aspects concerning Spirospaces are considered. First, Spirolaterals are presented as the predecessors of Spirospaces. Second, Spirospaces are defined, together with their structural parameters. Architectural modeling is studied at the light of two special elements of the Spirospaces: Interstitial spaces and Object spaces. Next, a computer program is presented as the appropriate tool to model configurations having architectural potentiality. Finally, the results obtained running the computer program are analyzed to determine their possible use as architectural forms. Several graphic illustrations are presented showing steps going from the exploration of spatial alternatives to the selection of a specific configuration to be developed.

It is expected that the described computer program could be employed as a design aid tool. As the operation of the program generates a variety of spaces able to dwell architectural objects, it eases the search of configurations suitable to specific functions. The results obtained have the possibility of being exported to computer graphic applications able to add materials, lights and cameras.

keywords Spirolaterals, Spirospaces, architectural spaces, interstitial spaces, objectual spaces
series other
type normal paper
email
last changed 2005/04/07 15:34

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2004_213
id sigradi2004_213
authors Carlos Roberto Barrios Hernandez
year 2004
title Parametric Gaudi
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This research is a work in progress in the development of parametric systems for modeling of complex shapes. The research takes on the fundamental rules for form generation of column knots of the Expiatory Temple of the Sagrada Familia in Barcelona. Designed by the Spanish Architect, Antonio Gaudi, the forms of the Sagrada Familia represent a synthesis of manipulation of simple geometrical rules and the use of basic procedures which result in a rich language with no precedents in architecture.
keywords Parametric modeling, design variations, evaluation of designs
series SIGRADI
email
last changed 2016/03/10 09:48

_id ddss2008-33
id ddss2008-33
authors Charlton, James A.; Bob Giddings and Margaret Horne
year 2008
title A survey of computer software for the urban designprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Urban design is concerned with the shape, the surface and the physical arrangement of all kinds of urban elements, the basic components that make up the built environment, at the level of buildings, spaces and human activities. It is also concerned with the non-visual aspects of the environment, such as noise, wind and temperature and humidity. The city square is a particular urban element which can take many forms and its geometrical relationships such as maximum dimensions, ratio of width to length and building height to length have been analysed for centuries (Alberti 1475), (Vitruvius 1550), (Sitte 1889), (Corbett 2004). Within the current urban design process there are increasing examples of three dimensional computer representations which allow the user to experience a visual sense of the geometry of city squares in an urban landscape. Computer-aided design and Virtual Reality technologies have recently contributed to this visual assessment, but there have been limited attempts at 3D computer representations which allow the user to experience a greater sense of the urban space. This paper will describe a survey of computer tools which could support a more holistic approach to urban design and which could be used to simulate a number of urban texture and urban quality aspects. It will provide a systematic overview of currently available software that could support the simulation of building density, height, colour and style as well as conditions relating to noise, shading, heat, natural and artificial light. It will describe a methodology for the selection and filtering of appropriate computer applications and offer an initial evaluation of these tools for the analysis and representation of the three-dimensional geometry, urban texture and urban quality of city centre spaces. The paper is structured to include an introduction to the design criteria relating to city centre spaces which underpins this research. Next the systematic review of computer software will be described, and selected tools will undergo initial evaluation. Finally conclusions will be drawn and areas for future research identified.
keywords Urban design, Software identification, 3D modelling, Pedestrian modelling, Wind modelling, Noise mapping, Thermal comfort, VR Engine
series DDSS
last changed 2008/09/01 17:06

_id 0131
id 0131
authors Chiarella, Mauro
year 2004
title GEOMETRY AND ARCHITECTURE: NURBS, DESIGN AND CONSTRUCTION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 135-139.
summary Geometry regarded as a tool for understanding is perhaps the part of Mathematics which is the most intuitive, concrete and linked to reality. From its roots as a tool to describe and measure shapes, geometry as ‘the space science’ , has grown towards a theory of ideas and methods by means of which it is possible to build and study idealised models, not only from the physical world but also from the real world. In graphic architecture thought, geometry usually appears as an instrumental support for project speculation. Geometric procedures are presented as representational resources for the graphic testing of reflection and for the exposition of ideas in order to build a logical order as regards representation and formal prefiguration. The fast rise of computing in the last decades has made it possible for architects to work massively and in a graphic and intuitive way with mathematical representations of tridimensional geometry, such as the NURBS . These organic surfaces of free shapes defined by vectorial curves have allowed access to a rapid generation of complex shapes with a minumum amount of data and of specific knowledge.

The great development of modelling achieved by the digital media and the limitations in the technical and building areas and in the existence of materials which are coherent with the resultant shapes reveal a considerable distance between the systems of ideation and simulation characteristic of the computing era and the analogous systems of production inherited from the slow industrial development. This distance has been shortened by CAD/CAM systems, which are, however, not very accessible to the architectural field. If we incorporate to the development of these divergent media the limitations which are distinctive of the material resources and procedures of the existent local technology, the aforementioned distance seems even greater.

Assuming the metaphor of living at the threshold of two ages (industrial-computing, analogical-digital, material-virtual) and the challenge of the new conceptual and operational tools in our field, we work in the mixture, with no exclusions or substitutions, proposing (by means of the development of informational complements) some alternatives of work to approach the issue under discussion from the Architecture Workshop.

keywords Geometry, Design, NURBS, Unfolding, Pedagogy
series other
type normal paper
email
last changed 2005/04/07 12:51

_id 2004_269
id 2004_269
authors Gowans, Scott and Wright, Richard M.
year 2004
title Developing Architectonic Language Through Digital Observation
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 269-277
doi https://doi.org/10.52842/conf.ecaade.2004.269
summary The question for architects is always how to begin. This proposal attempts to illustrate a design methodology that is characterised by its attention to non-traditional generators. The focus of the paper is the definition of an innovative design process characterised by the production of an architectonic language through the observation of the ephemeral and the transitory (the quanta of place), and which pays cognisance to the realization of a three-dimensional narrative, placing value upon the products of investigation as well as the resultant design. As the title suggests the process outlined concerns itself with the examination of the ephemeral, the transitory and the unobserved. The overriding concern is with the recording of fragments of a chosen environment (site) and, the collation and depiction of these findings in an alternative three-dimensional environment (virtual space). This process is only made possible by the advent of computer applications capable of generating the complexity of three-dimensional environments needed to explore the plethora of forms generated by the initial recordings. This process is concerned with the nascence of architectural expression and the formalising of architectural propositions composed from an individual’s interpretation of the ‘space between’, the obvious and the immaterial, and the phenomena that exist there. The generators are the things beyond immediate perception. They are the quanta of place. It is this process of capturing fixed moments in time and space and, translating imperceptible nanomoments and nanoevents, that allows for the development of exploratory diagrams constructed over a backdrop of credible analysis. These make apparent the infinite possibilities for further transition whilst illustrating the conceptual lineage that links each instance to its antecedents. The resultant physical forms embody the essence of something transformed. They possess cultural and emotional syntax. They become mementos in the landscape.
series eCAADe
last changed 2022/06/07 07:51

_id 916b
id 916b
authors Janusz Rebielak
year 2004
title SHAPING OF STRUCTURAL SYSTEMS OF HIGH-RISE BUILDINGS
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 341-350.
summary Design of an efficient and suitably rigid support structure of a tall building is constantly a challenge for architects and engineers. Recently this challenge is enormously increased by the safety requirements conditioned by numerous emergency reasons. Among others one should mention here about effects of fire or a terrorist attack. The complex forms of structural systems have to be examined in many ways. Comprehensive analyses of these systems are carried out by application of suitable numerical models of these systems. The paper contains examples of shapes of structural systems proposed by the author together with definitions of their numerical models prepared in the programming language Formian.
series other
type normal paper
email
last changed 2005/04/07 15:47

_id 41f0
id 41f0
authors Janusz Rebielak
year 2004
title NUMERICAL MODELS OF CHOSEN TYPES OF DOME STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 239-249.
summary The paper presents basic description of shaping processes of tension-strut structures developed by the author and proposed as lightweight structural systems for large span dome covers. In the paper are presented two basic types of the systems, which are built mainly by means of tetrahedral and octahedral modules with the V-shaped bar sets. For all the offered types of structures there are prepared suitable numerical models defined in the programming language Formian. Application of these numerical models considerably accelerates design process of these complex forms of spatial structures and makes possible an easier co-operation between all designers involved in this process.
series other
type normal paper
email
last changed 2005/04/08 17:17

_id ddss2004_d-157
id ddss2004_d-157
authors Krafta, R.
year 2004
title Space is the Machine, with a Ghost Inside
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 157-173
summary The purpose of this paper is to report efforts towards the construction of a model for urban spatial dynamics simulation, based on multi-agents and space. The underlying idea is to have urban space producers and consumers operating in a two-layer, two-circuit model. The first layer holds urban space and its successive transformations; a second layer contains agents related to space; the first circuit simulates space production, and a second one simulates space consumption. Relationship between layers is represented as objective spatial features that agents are submitted to (the machine) and subjective meanings agents attach to each spatial feature (the ghost). While space works always in the same way, meanings vary according to each agent’s background and context. Relationships between circuits are represented by means of a market game in which producers try to maximize their profits by gambling with their risks, whereas consumers try to foresee the spatial distribution of local externalities that maximizes their utilities and investments. Urban Spatial Features are captured through centrality and land use patterns; every single agent’s action leads to changes in both patterns. Producers’ profit is a function of built form location. Consumers’ local externalities are concerned basically with present and future services. The model iteration is twofold: first it generates and allocates a number of built forms within a previously determined spatial system (a cellular matrix, for example), and second it allocates users to built forms. Population of users have its social profile and growth rate externally determined. Built form allocation is decided on the basis of a combination of profitXrisk perspectives. Users’ locational choice is supported by accessibility to services and present/future neighbourhood profile. Built form allocation works as parameter for users’ locational assessment, whereas users’ choices are used as parameters for developers. The model tends to adjust itself, in terms of quantities and types of built forms to be erected, although through a market lag of some iterations. Allocations are always made through weighted draws, so that mutations (non deterministic allocations) do occur.
keywords Urban Morphology, Urban Growth, Simulation
series DDSS
last changed 2004/07/03 22:13

_id bfa9
id bfa9
authors Mahiques, Myriam Beatriz
year 2004
title BUENOS AIRES: URBAN QUADRILLE AND FRACTALITY UNDER THE LIGHT OF SOCIAL ASPECTS
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 55-59.
summary Investigations about urban form are developed in many directions, being the history branch the strongest. It is based on the importance of forms created by previous generations. So, urban morphologists must examine the inhabitants and the processes that originate the urban form. In our discipline, ´´epistemological physicalism´´ is studied through the theory of complex systems and chaos theory. The resultant shape is obtained by selecting some elements of the abstract structure considered (non Euclidean geometry) and simulation software is used for experimentation, like L Systems, Diffusion Limited Aggregated, Cellular Automata. Then we have to discover what is veiled at first sight and to reflect on the optimal model for the community.
series other
type normal paper
email
last changed 2005/04/07 12:48

_id acadia04_202
id acadia04_202
authors Matsushima, Shiro
year 2004
title Technology-mediated process: case study--MIT Stata Center
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 202-219
doi https://doi.org/10.52842/conf.acadia.2004.202
summary Gehry Partners’ (GP) sculptural approach to tectonic form, with its dramatic curves, complex geometry, and idiosyncratic application of materials, seems to have redefined the limits of architecture. The development of a strong formal vocabulary has been achieved by advanced use of information technologies, including CATIA, which allows translation among various tectonic representations, both in physical and digital forms. In addition, the nature of the office has much to do with other changes in the project delivery system, such as the relationships with associate architect, manufacturers, and subcontractors. This paper discusses how new technology changes the design and fabrication process, which has evolved from GP’s milestone project, Guggenheim Museum Bilbao, and how organizational efforts to involve the industry in the design process facilitate the project. Unlike at Bilbao, in the newly-completed Stata Center GP produced all the construction documents. This shift coincided with a gradual change in which GP was becoming involved in the technical aspects of their projects much earlier in the design process. Therefore they had to invest in new working relationships with the construction team, including fabricators, manufacturers, and contractors. The approach of Gehry and his team suggests that architectural practice can be liberated from its conventional arrangements. Although it is still evolving, Gehry has achieved a holistically integrated organizational system where the architect has far more direct interaction with all aspects of design and fabrication.
keywords design technology, fabrication process, communication protocol
series ACADIA
email
last changed 2022/06/07 07:58

_id sigradi2004_393
id sigradi2004_393
authors Mauro Chiarella
year 2004
title Superficies paramétricas y arquitectura: Conceptos, ideación y desarrollo [Parametric Surfaces and Architecture: Concepts, Ideation and Development]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary By incorporating parametric surfaces and spline entities into the shape modeling computer systems, new design and production graphic tools have been created in the conceptual and poetic field of architecture; thus allowing an intuitive approach to the fast production of complex shapes with a minimum amount of data and specific knowledge. The analogous production systems (constrained by the material resources and constructive procedures present in the local existing technologies) are challenged by design and virtual simulation systems, suggesting new relationships between the architectural features and their representation: the creation of a symbolic and dynamic information space where the representation affects the identity of what is being represented. Taking into account this current challenge mentioned above, we have decided to work in the mixture, without reciprocal exclusions or substitutions, proposing some work alternatives to approach the issue under discussion in the Architecture Workshop.
keywords Design, Geometry, NURBS, Unfolding, Pedagogy
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_868115 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002