CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 547

_id acadia04_110
id acadia04_110
authors Kilian, Axel
year 2004
title Linking Digital Hanging Chain Models to Fabrication
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 110-125
doi https://doi.org/10.52842/conf.acadia.2004.110
summary The paper traces the development of a digital hanging chain modeler in Java inspired by Antonio Gaudi’s physical hanging chain models. More importantly, it demonstrates how fabrication schemas for physical mockups of the digitally simulated hanging chain can be linked to the real time form finding simulation. Fabrication output is an integral part of the iterative process and not a post-design process. The current implementation is still limited and currently requires programming for reconfiguration. The paper proposes the link of form-finding and fabrication finding and lays out several examples and first steps of how to do so.
keywords form finding, simulation, fabrication
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia04_230
id acadia04_230
authors Johnson, Scott
year 2004
title Linking Analysis and Architectural Data: Why It's Harder than We Thought
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 230-243
doi https://doi.org/10.52842/conf.acadia.2004.230
summary This paper considers high-level, architecturally oriented repre­sentations, like Building Information Models (BIMs), and examines the difficulty of integrating analyses with such representations. Structural analysis is selected as a sample analysis domain, and is examined by integrating a structural analysis into the test implementation of a program that utilizes architecturally oriented elements. A fundamental problem is found to be that architecturally oriented elements are inappropriate for structural analysis. Methods for sequentially analyzing architectural elements are discussed, but are found to be inadequate. Accurate analysis requires analyzing the entire structure at once using a representation specific to structural analysis. A method for generating a structural representation based on the architectural representation is discussed, but the process is not simple. The process is complicated by the fact that architectural elements and structural elements do not correspond in a one-to-one or even a one-to-many manner. An accurate structural representation may even require semi-fictitious elements not corresponding to actual physical components. These findings are believed to be true for other analysis domains, as well.
keywords Representations, Building Information Models, Proteus, structural analysis, finite elements
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia04_282
id acadia04_282
authors Anders, Peter
year 2004
title Arch-OS: An Implementation of Cybrid Strategies
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 282-293
doi https://doi.org/10.52842/conf.acadia.2004.282
summary A review of the literature on Intelligent Buildings suggests an ideal of a building as an autonomous system that controls its internal and external environments. The model, whose origin lies with early models of artificial intelligence, effectively treats the building as a slave to human needs, and appears to invest more intelligence in the building than in its occupants. This paper proposes that automated environments be understood as extensions of human sense and awareness. It describes an operating system, Arch-OS, that exemplifies this approach by increasing building occupants’ consciousness of their environment.
keywords Cybrid, Mixed Reality, Responsive Environment, Planetary Collegium
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
doi https://doi.org/10.52842/conf.acadia.2004.088
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia04_186
id acadia04_186
authors Bell, Bradley
year 2004
title Digital Tectonics: Structural Patterning of Surface Morphology
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 186-201
doi https://doi.org/10.52842/conf.acadia.2004.186
summary The computer in architectural design has shifted from its role as a merely representational device to that of a tool for instrumentalized simulation and fabrication. The desire to make buildings look like a rendering, or to produce photo-realistic images and walkthroughs has given way to an opening of the potentials of software to assist the designer with managing complex geometries, parametric organizational diagrams, structural analysis, and integrated building systems. Simulation has become the means by which virtual space becomes more than just a mirror of reality. It becomes the space within which different potential realities can be tested and evaluated before they are materially implemented. In architecture, information derived from material constraints to site conditions can be constantly fed into the computer models to provide an accurate update, which in turn introduces feedback into the overall design, and change can then be registered in the detail.
keywords surface, patterns, structure, CAD/CAM, fabrication
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia04_244
id acadia04_244
authors Daubmann, Karl
year 2004
title Teaching Digital Fabrication through Design
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 244-255
doi https://doi.org/10.52842/conf.acadia.2004.244
summary This paper explains the development of a digital fabrication graduate seminar that has evolved over four semesters. The class attempts to teach at various levels between ‘how to’ considerations of learning hardware and software, while exploring a deeper understanding of the technological implications on design and digital fabrication. At the heart of the course is the belief that the limitations of hardware, software, and materials can be viewed as opportunities during the making of any artifact. A number of teaching models have been employed over the four semesters that include short, abstract, directed mini-projects, which teach one skill to the opposite extreme that develops longer, open-ended research / design projects focused on a technology or technique. The products of the class are used to compare the benefits and deficiencies of various pedagogies. The work is also used to further define the desires of the course related to strategies for materials and making.
keywords Digital fabrication, design research, craft
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
doi https://doi.org/10.52842/conf.acadia.2008.072
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia04_100
id acadia04_100
authors Liapi, Katherine
year 2004
title A computer Based System for the Design and Fabrication of Tensegrity Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 100-109
doi https://doi.org/10.52842/conf.acadia.2004.100
summary Tensegrity structures are composed of tension compression com­ponents, where the compression components (bars) are discontinu­ously enclosed within continuous tensile components (cables). From an engineering point of view, a tensegrity structure is characterized by geometric non-linearity and large displacements under loading. Therefore, its prestressed shape and deformation under loading are the result of the combined effect of the geometric parameters that determine the initial configuration of the structure, the level of pre­stress applied to cables, and the material properties of the compo­nent members of the structure. A method for generating the initial geometric configuration of tensegrity structures composed of tenseg­rity units and a parametric expression of this geometry have already been developed. A novel technology that makes possible the construction of tensegrity structures from the on-site assembly of deployable tensegrity units, which are fur­nished with a simple mechanism that permits bar-elongation, and, as a result, an increase of the prestress applied to the cables of each unit, is also under development. Also under development is a static analysis method that takes into account the above method for prestressing cables. This paper discusses the features of a system that supports the combined geometric and structural design of tensegrity structures, and integrates a graphical interface to display: a) models of initial geometry, b) geometry of the structure after prestress and loading are applied, and c) magnitude of forces applied to the structure’s component members (bars and cables). The system also provides numerical data to be used in component fabrication, and is therefore expected to become a very valuable tool for the design and construction of tensegrity structures.
series ACADIA
last changed 2022/06/07 07:59

_id acadia04_176
id acadia04_176
authors Loukissas, Yanni and Sass, Lawrence
year 2004
title RULEBUILDING (3D PRINTING: OPERATORS, CONSTRAINTS, SCRIPTS)
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 176-185
doi https://doi.org/10.52842/conf.acadia.2004.176
summary 3-D printers alter the speed, cost, complexity, and consistency with which physical architecture models can be crafted. If architects are to harness the unique abilities of this modeling process, it is necessary to find a complementary means of conceptualizing designs and generating the geometric data necessary for 3-D printing. This paper introduces a novel combination of 3-D printing and scripting through three examples of architectural surface models. In these examples, VBScript is used to write generative scripts for execution within the Rhinoceros modeling environment. The scripts produce digital geometric models which, in turn, are exported to a Z-Corp 3-D printer. The merits of this methodology are demonstrated, in one example, through models of an architectural surface composed of light-modulating conical components. The design intent in this example is a grid of responsive components which ride on a complex curved surface and steer toward a light. The written script is an explicit representation of this intention. Methods in the script use external parameters to generate a digital geometric model. The form of the subsequent printed model is calculated as a function of the initial parameters, two boundary splines and a vector indicating the orientation of the light. By varying these parameters, a set of design options can be generated and 3-D printed for comparison. The combination of scripting and 3-D printing allows complex design intentions to be managed in a concise, sharable format and modeled iteratively without manual intervention.
keywords Generative, Scripting, Rapid Prototyping, 3-D Printing, Architectural Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2015_421
id cf2015_421
authors Miyasaka, Elza Luli and Fabrício, Márcio Minto
year 2015
title Digital Fabrication in Brazil: Academic Production in the last decade
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 421-433.
summary This work aims to review the literature on digital fabrication verifying the Brazilian status on a general view. Concerning the methodology, the research was carried out from 2004 to 2014 analyzing three aspects: 1. the situational context of digital fabrication; 2. digital fabrication in the design process; 3. the Brazilian status. The findings revealed the use of digital fabrication is mainly focused on the design process. Also, the most common objects in the research are the development of models, furniture and pavilions. Moreover, digital fabrication is increasingly being inserted in the syllabus of architecture schools. Brazil strikes in object production both in quantities and interests throughout the country.
keywords Digital Fabrication; design production, literature / review; CAD/ CAM architecture.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id 2004_630
id 2004_630
authors Naai-Jung Shih, Chen-Yan Lin, and Chai-Yuan Liau
year 2004
title A 3D Information System for the Digital Preservation of Historical Architecture
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 630-637
doi https://doi.org/10.52842/conf.ecaade.2004.630
summary The purpose of this study is to build 3D models for the digital preservation of Chinese architecture. A historical architecture, the main hall of the Pao-An Temple, was scanned with a long-range 3D laser scanner. This temple is 19.68 meters wide, 18.2 meters wide, and 15.7 meters high. In total, the exterior and interior were registered into 1958 scans in order to cover the main hall. Scanned point clouds were converted into 3D computer models, sections, and boundary projections. Digital models were used as references for chronological records and comparison. Scanned components included the roof ridge, wood structure, dragon column, and a hanging flower. This research, which was sponsored by the National Science Council, created a two-way construction process, integrated geometric and image data, and established a digital reservation work process. Web pages were made to display 3D color components by using a plug-in to enable browsing of large files.
keywords 3D Laser Scanner; Historical Preservation
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

_id 2004_095
id 2004_095
authors Sass, Larry
year 2004
title Design for Self Assembly of Building Components using Rapid Prototyping
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 95-104
doi https://doi.org/10.52842/conf.ecaade.2004.095
summary Design of assemblies will become an area of study when using rapid prototyping devices in the architectural design process becomes standard practice. This paper is a presentation of a design process study focused on understanding a method of working with rapid prototyping devices in a creative design process. This paper has an emphasis is on the creation of physically large models. These models are built from many layers of detail and are too large to print on a conventional 3D building device (3D printer). In response to this is a proposal to design assemblies as a means to create models of parts manufactured with rapid prototyping devices. Design for Assembly (DFA) becomes an exclusive process within this method of model making. Designing assemblies as part of a creative design enterprise offers greater knowledge of the building's construct at an early stage of the process. As an example, there are three physical models built from 3D CAD descriptions for this study. These models are manufactured from various rapid prototyping devices and differing processes of assembly. They are evidence of DFA as a necessary process in architectural design when using rapid prototyping devices.
keywords Digital Fabrication, Design Methods, Design for Assembly
series eCAADe
last changed 2022/06/07 07:57

_id sigradi2004_071
id sigradi2004_071
authors Marcelo Payssé; Magela Bielli; Juan Pablo Portillo; Fernando Rischewski
year 2004
title Proyecto de automatización de cálculos estructurales para programas cadî, uso de herramientas informáticas en la enseñanza del cálculo estructural en la facultad de arquitectura [Automation Project of Structural Calculations for CAD Programs - Use of Digital Tools for Structural Calculations in the School of Architecture]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper describes the implementation of Automated Structural Calculations For CAD Programs. We aim to develop a newly conceived software prioritizing the analysis and structural design in the conceptual aspect, linking the calculation with the usual graphic procedures by means of a specific application for local education methodology, that will be intellectual property of our University. It refers the methodology applied in the implementation of the program and the pedagogical aspect we considered. The software is developped as a macro programmed in open source code (Visual Basic Application) with data-input and data output generated in AutoCAD 2000. The specific objectives are: to obtain significant improvements in the habitual resolution standards of complex exercises, to obtain suitable software with free distribution for academic purposes with minimum costs and develop an adequate instrument to the specific architects . work modality in our faculty.
keywords Academic experiences, structural calculation, structural representation
series SIGRADI
email
last changed 2016/03/10 09:55

_id 2004_090
id 2004_090
authors Abdelhameed, Wael
year 2004
title Visual Design Thinking in the Design Process as Impacted by Digital Media
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 90-94
doi https://doi.org/10.52842/conf.ecaade.2004.090
summary Exploring design ideas, through two dimensional and three dimensional forms, is the basis of design exploration and visual design thinking during the design process. Imagining how drawings and models (be it manual or digital) will be presented in reality is the essence of visual design thinking. By the beginning of the 20th Century, architecture has become more three dimensional in design exploration and in representation. This transition to three dimensions makes the processes of visual design thinking more related to digital media. The nature of media, utilized by architects, affects design-exploration processes. The research investigates both the processes of visual design thinking and the interrelation between visual design thinking and digital media, in order to shed more light on how digital media should be introduced to students of architecture.
keywords Visual Design Thinking: Digital Media; Architectural Education; Design Process
series eCAADe
last changed 2022/06/07 07:54

_id sigradi2004_081
id sigradi2004_081
authors Adriane Borda Almeida da Silva; Paula Roberta Silveira; Cristina Wildt Torrezan
year 2004
title Materiais didáticos paraoensino presencial e não presencial de perspectiva [Pedagogic Materials for Distance and Face-to-face Teaching of Perspective]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary The didactic activity related to the teaching of Perspective has been revised considering the possibility offered by the computing tools. This review must evaluate the potentialities of concepts and procedures related to the traditional techniques as sources for architectural graphics expression, before suggesting its suppression. It is possible to improve the accuracy and quickness controlling the visualization parameters of three-dimensional models. On the other hand, it is necessary to explore the development of the ability to construct quick hand made perspectives (sketches). This work searches for the development of a structure to the teaching process, which emphasizes the potentiality of both ways, traditional and computerized. It explores the flexibility of teaching, from face to face to distance learning, and introduces an enlarged structure of knowledge able to support the traditional and also a computerized process of representation.
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2004_030
id sigradi2004_030
authors Andreas Voigt; Helena Linzer; Elmar Schmidinger
year 2004
title What people really want - User validation of "digital city" concepts
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This Paper discusses the experience acquired from the user-compatible development of a digital city model as an aid to urban planning based on the endeavours of a large Austrian city. The method selected was a structured survey of the future users of the "Digital City". In the case in question, the addressee is initially an "internal" client, in other words the staff of the Urban Planning Department. Above all findings it seems vital to work more intensive on common terminology and concepts to facilitate the communication between all those involved in creating digital three-dimensional City Models.
series SIGRADI
email
last changed 2016/03/10 09:47

_id avocaad_2003_06
id avocaad_2003_06
authors Arturo F. Montagu and Juan Pablo Cieri
year 2003
title Urbamedia - Development of an urban database of fragments of some Argentinian and Latin-American cities using digital technology
source LOCAL VALUES in a NETWORKED DESIGN WORLD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Stellingwerff, Martijn and Verbeke, Johan (Eds.), (2004) DUP Science - Delft University Press, ISBN 90-407-2507-1.
summary The proposal of "Urbamedia" is to undertake the development of 3D virtual and interactive models of historical areas of Latin-American cities. The selected zone is the "Mayo Avenue" including the "Mayo Square", an historical place of the city of Buenos Aires, Argentina; this project is financed by the National Agency of Scientific and Technological Development of Argentina and the University of Buenos Aires.We are presenting the first experimental model of the "Mayo Square" that has been developed at ABACUS, Department of Architecture & Building Aids Computer Unit, University of Strathclyde UK. combined with a system analysis of urban activities using the “Atlas.ti” CAQDAS software.This particular use of the “Atlas.ti” software is under experimental applications to this type of urban analysis procedures; allowed us the possibility to analysed a set of activities by means of graph theory as result of a series of interviews to the people working in the area. We are also looking to include historical areas of three cities: Mar del Plata, Rosario and Santa Fe (Argentina) and eventually other cities from Latin América as Rio de Janeiro and Habana.Due that ABACUS has a strong experience in city modelling plus the powerful software and hardware used there, we must develop a VRML customized menu to be adapted to our low cost PC equipment. The 3D model will be used mainly in urban design simulation procedures and the idea is to extend to other type of simulations of the environmental parameters.
keywords Architecture, Local values, Globalisation, Computer Aided Architectural Design
series AVOCAAD
email
last changed 2006/01/16 21:38

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_908085 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002