CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id ijac20032207
id ijac20032207
authors Liapi, Katherine A.; Kim, Jinman
year 2004
title A Parametric Approach to the Design of Vaulted Tensegrity Networks
source International Journal of Architectural Computing vol. 2 - no. 2
summary Significant new research in tensegrity theory and technology encourages tensegrity’s implementation in architecture. A recently developed technology makes possible the rapid modular assembly of deployable tensegrity units, and the construction of alternate curved configurations by re-using the same modules. Although a form exploration method for tensegrity structures already exists, estimating the structure’s new geometry remains a challenge due to difficulties designers encounter in understanding and following the method’s geometric construction process. Besides, the method doesn’t address the geometry of vaulted configurations. This paper presents algorithms that link together the geometric parameters that determine the shape of tensegrity vaults by addressing different design-construction scenarios, and a software code that generates parametric models of tensegrity vaulted structures.The application of the algorithms to the morphological study of a tensegrity vaulted dome, which constituted the main feature of an entry to arecent international architectural competition, is also presented.
series other
type normal paper
more http://www.multi-science.co.uk/ijac.htm
last changed 2010/05/16 09:13

_id acadia03_040
id acadia03_040
authors Katherine A. Liapi, Katherine A. and Kim, Jinman
year 2003
title A Parametric Approach to the Design of a Tensegrity Vaulted Dome for an Ephemeral Structure for the 2004 Olympics
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 301-309
doi https://doi.org/10.52842/conf.acadia.2003.301
summary Tensegrity, defined as “tensional integrity,” is central to the design of a semi-open exhibition space that was submitted as an entry to the international competition for the design of “Ephemeral Structures for the City of Athens,” in the context of the 2004 Olympic Games. The main feature of the proposed exhibition space is a vaulted dome composed of interconnected detachable and deployable tensegrity units. The most challenging aspect in the design of the tensegrity vault was the generation of alternative spatial configurations for form exploration and study. For this purpose a mathematical code has been developed that links all the parameters that affect the design of tensegrity vaults. The code also allows for the parametric graphical generation of the vault by displaying geometric information in a 3D environment. This paper discusses the geometric basis of the code and its usefulness in the morphological study of the tensegrity vaulted dome for the proposed ephemeral structure. The mathematical code has been shown to significantly facilitate the study of various preliminary configurations of tensegrity vaulted structures.
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia04_100
id acadia04_100
authors Liapi, Katherine
year 2004
title A computer Based System for the Design and Fabrication of Tensegrity Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 100-109
doi https://doi.org/10.52842/conf.acadia.2004.100
summary Tensegrity structures are composed of tension compression com­ponents, where the compression components (bars) are discontinu­ously enclosed within continuous tensile components (cables). From an engineering point of view, a tensegrity structure is characterized by geometric non-linearity and large displacements under loading. Therefore, its prestressed shape and deformation under loading are the result of the combined effect of the geometric parameters that determine the initial configuration of the structure, the level of pre­stress applied to cables, and the material properties of the compo­nent members of the structure. A method for generating the initial geometric configuration of tensegrity structures composed of tenseg­rity units and a parametric expression of this geometry have already been developed. A novel technology that makes possible the construction of tensegrity structures from the on-site assembly of deployable tensegrity units, which are fur­nished with a simple mechanism that permits bar-elongation, and, as a result, an increase of the prestress applied to the cables of each unit, is also under development. Also under development is a static analysis method that takes into account the above method for prestressing cables. This paper discusses the features of a system that supports the combined geometric and structural design of tensegrity structures, and integrates a graphical interface to display: a) models of initial geometry, b) geometry of the structure after prestress and loading are applied, and c) magnitude of forces applied to the structure’s component members (bars and cables). The system also provides numerical data to be used in component fabrication, and is therefore expected to become a very valuable tool for the design and construction of tensegrity structures.
series ACADIA
last changed 2022/06/07 07:59

_id sigradi2004_393
id sigradi2004_393
authors Mauro Chiarella
year 2004
title Superficies paramétricas y arquitectura: Conceptos, ideación y desarrollo [Parametric Surfaces and Architecture: Concepts, Ideation and Development]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary By incorporating parametric surfaces and spline entities into the shape modeling computer systems, new design and production graphic tools have been created in the conceptual and poetic field of architecture; thus allowing an intuitive approach to the fast production of complex shapes with a minimum amount of data and specific knowledge. The analogous production systems (constrained by the material resources and constructive procedures present in the local existing technologies) are challenged by design and virtual simulation systems, suggesting new relationships between the architectural features and their representation: the creation of a symbolic and dynamic information space where the representation affects the identity of what is being represented. Taking into account this current challenge mentioned above, we have decided to work in the mixture, without reciprocal exclusions or substitutions, proposing some work alternatives to approach the issue under discussion in the Architecture Workshop.
keywords Design, Geometry, NURBS, Unfolding, Pedagogy
series SIGRADI
email
last changed 2016/03/10 09:55

_id ddss2004_ra-33
id ddss2004_ra-33
authors Diappi, L., P. Bolchim, and M. Buscema
year 2004
title Improved Understanding of Urban Sprawl Using Neural Networks
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 14020-2408-8, p. 33-49
summary It is widely accepted that the spatial pattern of settlements is a crucial factor affecting quality of life and environmental sustainability, but few recent studies have attempted to examine the phenomenon of sprawl by modelling the process rather than adopting a descriptive approach. The issue was partly addressed by models of land use and transportation which were mainly developed in the UK and US in the 1970s and 1980s, but the major advances were made in the area of modelling transportation, while very little was achieved in the area of spatial and temporal land use. Models of land use and transportation are well-established tools, based on explicit, exogenouslyformulated rules within a theoretical framework. The new approaches of artificial intelligence, and in particular, systems involving parallel processing, (Neural Networks, Cellular Automata and Multi-Agent Systems) defined by the expression “Neurocomputing”, allow problems to be approached in the reverse, bottom-up, direction by discovering rules, relationships and scenarios from a database. In this article we examine the hypothesis that territorial micro-transformations occur according to a local logic, i.e. according to use, accessibility, the presence of services and conditions of centrality, periphericity or isolation of each territorial “cell” relative to its surroundings. The prediction capabilities of different architectures of supervised Neural networks are implemented to the south Metropolitan area of Milan at two different temporal thresholds and discussed. Starting from data on land use in 1980 and 1994 and by subdividing the area into square cells on an orthogonal grid, the model produces a spatial and functional map of urbanisation in 2008. An implementation of the SOM (Self Organizing Map) processing to the Data Base allows the typologies of transformation to be identified, i.e. the classes of area which are transformed in the same way and which give rise to territorial morphologies; this is an interesting by-product of the approach.
keywords Neural Networks, Self-Organizing Maps, Land-Use Dynamics, Supervised Networks
series DDSS
last changed 2004/07/03 22:13

_id avocaad_2003_08
id avocaad_2003_08
authors Gernot Pittioni
year 2003
title A World of Networks - Global and Local Impacts
source LOCAL VALUES in a NETWORKED DESIGN WORLD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Stellingwerff, Martijn and Verbeke, Johan (Eds.), (2004) DUP Science - Delft University Press, ISBN 90-407-2507-1.
summary As a couple of years ago the use of computers slowly entered studios of architecture, the development of operating systems actually enables everybody to control even bigger networks within studios or offices. Recently these local networks started to get networked themselves. Interactions between local design partners involve a large variety of problems• different CAD-systems• different versions of the same CAD-system• different methods of transfer• different security ideas• different levels of technical knowledge In the course of extension to a global level these problems in the first approach have been growing dramatically, involving additionally language and mentality problems. But in the outcome the exchange of documents and ideas improves in speed, quality and accuracy or this will at least happen in the near future.Global networking offers a great challenge, we have to give this matter a big deal of efforts to earn the values and results, which may be achieved.
keywords Architecture, Local values, Globalisation, Computer Aided Architectural Design
series AVOCAAD
email
last changed 2006/01/16 21:38

_id ddss2004_ra-129
id ddss2004_ra-129
authors Ma, L., Th. Arentze, A. Borgers, and H. Timmermans
year 2004
title Using Bayesian Decision Networks for Knowledge Representation under Conditions of Uncertainty in Multi-Agent Land Use Simulation Models
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN 1-4020-24088, p. 129-144
summary Land suitability analysis typically involves the assessment of the suitability of land units without knowing the future spatial distribution of land use. Traditional planning techniques have used “algebraic equations” to express land suitability as a weighted function of suitability scores across multiple criteria. However, the existing multi-criteria evaluation methods do not systematically account for uncertainty about the land use in adjacent and other cells. This paper proposes an alternative approach to land suitability analysis that does address the problem of uncertainty. In particular, Bayesian decision networks are suggested as a means of knowledge representation for agents in a multi-agent land use simulation system. Bayesian decision networks model the uncertainty in terms of probabilities specified in the network representing the expertise of specialists with respect to specific land uses. This paper discusses the approach and illustrates its use in the context of a retail agent.
keywords Land Suitability Analysis, Multi-Agents, Knowledge Representation, Bayesian Decision Networks
series DDSS
last changed 2004/07/03 22:13

_id ascaad2004_paper4
id ascaad2004_paper4
authors Ahmad, Sumbul and Scott C. Chase
year 2004
title Design Generation of the Central Asian Caravanserai
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Challenges for the study of Islamic architecture include its abundance and diversity in expression and its classification based on distinct functional or stylistic types. We address these issues by presenting shape grammars as a methodology for the analysis and design generation of Islamic architecture, with a specific example in the form of a parametric shape grammar for central Asian caravanserais. The grammar is developed by identifying distinct design types. Shape rules are created based on a study of the spatial elements and their organisation in the designs. We illustrate the utility of the grammar by deriving an extant design and as well as, previously unknown designs. We conclude by discussing possible extensions to the current grammar and future work involving the development of a grammar based framework for the comparative analysis of medieval Islamic courtyard buildings.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
doi https://doi.org/10.52842/conf.acadia.2004.088
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia04_186
id acadia04_186
authors Bell, Bradley
year 2004
title Digital Tectonics: Structural Patterning of Surface Morphology
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 186-201
doi https://doi.org/10.52842/conf.acadia.2004.186
summary The computer in architectural design has shifted from its role as a merely representational device to that of a tool for instrumentalized simulation and fabrication. The desire to make buildings look like a rendering, or to produce photo-realistic images and walkthroughs has given way to an opening of the potentials of software to assist the designer with managing complex geometries, parametric organizational diagrams, structural analysis, and integrated building systems. Simulation has become the means by which virtual space becomes more than just a mirror of reality. It becomes the space within which different potential realities can be tested and evaluated before they are materially implemented. In architecture, information derived from material constraints to site conditions can be constantly fed into the computer models to provide an accurate update, which in turn introduces feedback into the overall design, and change can then be registered in the detail.
keywords surface, patterns, structure, CAD/CAM, fabrication
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac20075402
id ijac20075402
authors Burry, Jane R.
year 2007
title Mindful Spaces: Computational Geometry and the Conceptual Spaces in which Designers Operate
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 611-624
summary Combinatorial computational geometry, while dealing with geometric objects as discrete entities, provides the means both to analyse and to construct relationships between these objects and relate them to other non-geometrical entities. This paper explores some ways in which this may be used in design through a review of six, one-semester-long design explorations by undergraduate and postgraduate students in the Flexible Modeling for Design and Prototyping course between 2004 and 2007. The course focuses on using computational geometry firstly to construct topologically defined design models based on graphs of relationships between objects (parametric design,) and concurrently to output physical prototypes from these "flexible models"(an application of numerical computational geometry). It supports students to make early design explorations. Many have built flexible models to explore design iterations for a static spatial outcome. Some have built models of real time responsive dynamic systems. In this educational context, computational geometry has enabled a range of design iterations that would have been challenging to uncover through physical analogue means alone. It has, perhaps more significantly, extended the students' own concept of the space in which they design.
series journal
email
last changed 2008/02/25 20:30

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id acadia04_020
id acadia04_020
authors Eastman, Charles
year 2004
title New Methods of Architecture and Building
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 20-27
doi https://doi.org/10.52842/conf.acadia.2004.020
summary Three conditions exist that are likely to lead to significant restructuringof the construction industry. These are (1): the recognition that traditional contracting practices are inefficient and costly to the client, (2) the growing availability of information-rich 3D parametric modeling, and (3) the strong interest in integrating the issues of design and fabrication. Some aspects of these conditions are examined using two examples: parametric design and integration in steel structural design, and in fabrication-level modeling of precast concrete. The implications of these changes are explored.
series ACADIA
last changed 2022/06/07 07:55

_id 9e09
id 9e09
authors June-Hao Hou
year 2004
title SURF_TM: A SURFACE SYNTHESIZER FOR ARCHITECTURAL FORMS
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 359-369.
summary Parametric equation is one of the possible ways to generate free-form architecture in modern age. When working with mathematical software, designers need a way to bring surface mesh to CAD for further design. Surf_TM is an supplemental tool for AutoCAD to import and manipulate surface mesh data from Mathcad. Accompanying with a course taught in Harvard Design School, students gain knowledge in mathematics and use parametric equation as a design tool. This paper elaborates details of the course, the tool, how they work together, and example applications.
series other
type normal paper
email
last changed 2005/04/07 15:49

_id ecaade2008_081
id ecaade2008_081
authors LaBelle, Guillaum; Nembrini, Julien; Huang , Jeffrey
year 2008
title Simulation-Driven Design System
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 469-476
doi https://doi.org/10.52842/conf.ecaade.2008.469
summary This paper presents a design process efficiently involving parametric design, realistic physical simulation and rapid-prototyping fabrication for contextual shape adaptation. This case study focuses on lighting simulation for the specific problem of solar energy harvesting. Inspired by the phototropic mechanism, the ability of plants to grow according to the availability of light, an innovative design technique is defined, taking its root in the morphogenetic design school [Hensel, 2004].
keywords Parametric,Simulation, Generative Design, CAD, Phototropism
series eCAADe
email
last changed 2022/06/07 07:52

_id 2004_318
id 2004_318
authors Ng, Edward
year 2004
title Optimise Urban Daylight Design Using Computational Simulations
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 318-324
doi https://doi.org/10.52842/conf.ecaade.2004.318
summary Urban design is about providing an infrastructure for its inhabitants. An important consideration of design is to provide natural outdoor conditions that are pleasant and conductive to human activities. A well designed outdoor urban environment will also make the design of individual buildings within it easier. There are many design parameters, for example: Development Density, Plot ratio, Site Coverage, Skyline, Building to Space Ratio, Permeability, Building Shapes and so on. This paper reports a study based on „skylines“ as a design parameter, and how it affects daylight and natural ventilation provisions and performance. Experiments are conducted with physical models in artificial sky, as well as using computational lighting simulations. The study establishes that by varying the skylines of the city, the overall daylight performances could be improved when compared to a city with a uniform skyline - given the same density. The message of the paper is that: through better understanding and design, high density cities could be planned and optimised without losing the development efficacy of the land.
keywords Daylight; Parametric Study; Urban Design; Density
series eCAADe
email
last changed 2022/06/07 07:58

_id 2004_195
id 2004_195
authors Ozel, Filiz
year 2004
title Modulation and Mathematics in Generative Building Design
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 195-200
doi https://doi.org/10.52842/conf.ecaade.2004.195
summary The rise of design computation as a paradigm in design process has certainly brought increased attention to the mathematical basis of form giving in architectural design. Numerous types of generative systems ranging from shape grammars to parametric design have been developed in the past, where computers are used as a tool to generate building form automatically. This paper focuses on the role of number sequences and mathematical methods of controlling and introducing systematic change (modulation) to generative systems. In a graduate level class, VBA programming through a CAD system was used to develop software that can parametrically generate 2-d and 3-d forms. As a conclusion, the paper argues that forms generated as such are not monotonous, and that being particularly attentive to the mathematical basis of variation and change in parametric generators allows one to explore change in a more systematic fashion.
keywords Generative System, Mathematics, Modulation, CAD
series eCAADe
last changed 2022/06/07 08:00

_id 041226_ribaudo-m
id 041226_ribaudo-m
authors Ribaudo,
year 2004
title Parametric Construction Stylesheets
source ETH postgraduate studies final thesis, Zurich
summary The present thesis is centred on the use of programmed tools as alternative or as support of the classical computer aided architectural design methods.This thesis shows among other things how were programmed/generated the mathematical descriptions of the frames, the joints and the production drawings using MEL (Maya Embedded Language).Further will be discussed pros and cons of the imported and exported digital data structures for their respective purpose like the generation of the joint details, the model visualizations, the different prototypes and the generation of the construction stylesheets.The result of this work will be shown by visualizations of digital models as well as by using rapid prototyping methods and CNC machines.Moreover this thesis will deal with the programming of stylesheets which were used to generate variants of constructions.The NDS2004 prototype represents such a variant and was produced with the above mentioned programmed tools.
series thesis:MSc
last changed 2005/09/09 12:58

_id sigradi2018_1824
id sigradi2018_1824
authors Silva, Thiago; Lima, Juliana; Maia, Nicole; Araujo, André
year 2018
title Design synthesis and performance: simulation, discussion and generative strategies
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 625-630
summary Since the publication of the book Performance architecture: beyond instrumentality (KOLAREVIC and MALKAWI,2004), architects have used a good performance as a guideline for the projects. This research proposes to investigate the possibilities and limitations of one of the guidelines through the incorporation of instantaneous aerodynamics in the parametric design context, from the use of parametric modeling techniques, electronic microcontrollers and computational extensions to promote the connection between them. From the construction of this artifact, we expect to develop strategies for including performance simulations in the processes of synthesis in architecture.
keywords Ventilation; Wind-sensors; Parametric Design, Arduino
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia04_282
id acadia04_282
authors Anders, Peter
year 2004
title Arch-OS: An Implementation of Cybrid Strategies
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 282-293
doi https://doi.org/10.52842/conf.acadia.2004.282
summary A review of the literature on Intelligent Buildings suggests an ideal of a building as an autonomous system that controls its internal and external environments. The model, whose origin lies with early models of artificial intelligence, effectively treats the building as a slave to human needs, and appears to invest more intelligence in the building than in its occupants. This paper proposes that automated environments be understood as extensions of human sense and awareness. It describes an operating system, Arch-OS, that exemplifies this approach by increasing building occupants’ consciousness of their environment.
keywords Cybrid, Mixed Reality, Responsive Environment, Planetary Collegium
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_247933 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002