CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia04_046
id acadia04_046
authors Timberlake, James
year 2004
title SmartWrap Pavilion
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 46-49
doi https://doi.org/10.52842/conf.acadia.2004.046
summary The combination of new materials and digital design has a transformative potential, providing building products and architecture tailored specifically to the clients’ needs and site requirements. This is the essence of the architecture of mass costumisation or personalised production. How can one demonstrate this physically when in essence the product is significantly ahead of current production capabilities? This was the dilemma faced by architects James Timberlake and Stephen Kieran of KieranTimberlake Associates, when asked to design a pavilion for the Cooper-Hewitt National Design Museum in the autumn of 2003. Their response is the SmartWrap Pavilion. The SmartWrap concept will deliver shelter, climate control, lighting, information display and power with a printed and layered polymer composite. The aluminium-framed pavilion is clad in a printed skin based on a combination of polyester and its derivative polyethylene terephthalate (PET), which was developed with DuPont. The pavilion was designed using a single project model, and all the aluminium extrusions of the frame were barcoded. This coding defined their structural and construction properties.
series ACADIA
type normal paper
last changed 2022/06/07 07:56

_id liewh_pdh_2004
id liewh_pdh_2004
authors Liew, Haldane
year 2004
title SGML: a meta-language for shape grammars
source PhD dissertation, Department of Architecture, Massachusetts Institute of Technology, Cambridge, Mass
summary A shape grammar develops a drawing through a series of transformations by repeatedly applying if-then rules. Although the rules can be designed, in principle, to construct any type of drawing, the drawings they construct may not necessarily develop in the manner intended by the designer of the grammar. In this thesis, I introduce a shape grammar meta-language that adds power to grammars based on the shape grammar language. Using the shape grammar meta-language, the author of a grammar can: (1) explicitly determine the sequence in which a set of rules is applied; (2) restrict rule application through a filtering process; and (3) use context to guide the rule matching process, all of which provide a guided design experience for the user of the grammar. Three example grammars demonstrate the effectiveness of the meta-language. The first example is the Bilateral Grid grammar which demonstrates how the meta-language facilitates the development of grammars that offer users multiple design choices. The second grammar is the Hexagon Path grammar which demonstrates how the metalanguage is useful in contexts other than architectural design. The third and most ambitious example is the Durand grammar which embodies the floor plan design process described in Précis of the Lectures of Architecture, written by JNL Durand, an eighteenth century architectural educator. Durand's floor plan design process develops a plan through a series of transformations from grid to axis to parti to wall. The corresponding Durand grammar, which consists of 74 rules and 15 macros organized into eight stages, captures Durand's ideas and fills in gaps in Durand's description of his process. A key contribution of this thesis is the seven descriptors that constitute the meta-language. The descriptors are used in grammar rules: (1) to organize a set of rules for the user to choose from; (2) to group together a series of rules; (3) to filter information in a drawing; (4) to constrain where a rule can apply; and (5) to control how a rule is applied. The end result is a language that allows the author to create grammars that guide users by carefully controlling the design process in the manner intended by the author.
series thesis:PhD
email
last changed 2005/09/09 12:58

_id 2004_617
id 2004_617
authors Barelkowski, Robert
year 2004
title The Optimization of Assumptions of the Reconstruction of Monumental Objects of Romanesque and Gothic Architecture - Computer Aided Archeological and Architectural Research
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 617-623
doi https://doi.org/10.52842/conf.ecaade.2004.617
summary The paper discusses the methodological principles, the structure and the application aspects of individually created software application helping in architectural / archaeological research. The program is designed as 3layer software, providing the user with database, application with all functional modules and interface. The key content is the modular application allowing dynamic structural analyses, comparative analyses and other various possibilities, necessary in collecting and revising data from different sources. In author’s opinion the Manticora software is able to vastly support the interdisciplinary research and can help in optimizing its results.
keywords Interdisciplinarity, Computer Aided Architectural / Archaeological Research, Programming Tools, Programming Implementations for Architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id 5cf4
id 5cf4
authors Barrionuevo, Luis F.
year 2004
title LOS "SPIROSPACES"
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 179-187.
summary This paper deals with “Spirospaces”. These are a conversion to the third dimension of the two dimensional geometric entities called “Spirolaterals”.

Abelson, Harold, diSessa and Andera (1968) gave the first rules concerning Spirolaterals. To obtain a Spirolateral from a set of straight lines, the first of them must be one unit long and the following must be incremented one unit at each step, at the same time that they turn in a constant direction. Odds (1973) establish the variation of the rotation direction, either to the left or the right. However, he did not give a mathematical relation able to calculate open Spirolaterals. Krawczyk (2001) developed a computer program that generates Spirolaterals following the method suggested by Abelson. These are Spirolaterals obtained by enumeration without a predictive mathematical formula. Krawczyc went farther proposing Spirolaterals based in curved lines. He pointed out that there are a variety of spirolateral forms that have architectural potentiality. Following this, the architectural potentiality of Spirolaterals is the basis of this paper.

To take advantage of that potentiality a computer program was implemented to generate spatial configurations based in Spirolaterals. When a third dimension is given to the Spirolaterals they become Spirospaces. These new entities need spatial and design parameters to be useful for architectural purposes. Barrionuevo and Borsetti (2001) gave results about that work establishing the concept of Spirospaces.

The aim of this paper is to describe a work directed to improve rules and procedures concerning Spirospaces. It is expected that these procedures governed by the proposed rules can be employed as tools during the early steps in the architectural design process.

In this work some aspects concerning Spirospaces are considered. First, Spirolaterals are presented as the predecessors of Spirospaces. Second, Spirospaces are defined, together with their structural parameters. Architectural modeling is studied at the light of two special elements of the Spirospaces: Interstitial spaces and Object spaces. Next, a computer program is presented as the appropriate tool to model configurations having architectural potentiality. Finally, the results obtained running the computer program are analyzed to determine their possible use as architectural forms. Several graphic illustrations are presented showing steps going from the exploration of spatial alternatives to the selection of a specific configuration to be developed.

It is expected that the described computer program could be employed as a design aid tool. As the operation of the program generates a variety of spaces able to dwell architectural objects, it eases the search of configurations suitable to specific functions. The results obtained have the possibility of being exported to computer graphic applications able to add materials, lights and cameras.

keywords Spirolaterals, Spirospaces, architectural spaces, interstitial spaces, objectual spaces
series other
type normal paper
email
last changed 2005/04/07 15:34

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
doi https://doi.org/10.52842/conf.acadia.2004.088
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia04_186
id acadia04_186
authors Bell, Bradley
year 2004
title Digital Tectonics: Structural Patterning of Surface Morphology
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 186-201
doi https://doi.org/10.52842/conf.acadia.2004.186
summary The computer in architectural design has shifted from its role as a merely representational device to that of a tool for instrumentalized simulation and fabrication. The desire to make buildings look like a rendering, or to produce photo-realistic images and walkthroughs has given way to an opening of the potentials of software to assist the designer with managing complex geometries, parametric organizational diagrams, structural analysis, and integrated building systems. Simulation has become the means by which virtual space becomes more than just a mirror of reality. It becomes the space within which different potential realities can be tested and evaluated before they are materially implemented. In architecture, information derived from material constraints to site conditions can be constantly fed into the computer models to provide an accurate update, which in turn introduces feedback into the overall design, and change can then be registered in the detail.
keywords surface, patterns, structure, CAD/CAM, fabrication
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id 2004_312
id 2004_312
authors Burry, J., Felicetti, P., Tang, J., Burry, M. and Xie, M.
year 2004
title Dynamical Structural Modeling - A Collaborative Design Exploration
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 312-317
doi https://doi.org/10.52842/conf.ecaade.2004.312
summary This paper will report on a generative performative modeling approach that engages architects and structural engineers in close dialog. We focus on knowledge shared between architects and engineers to apply the Finite Element Analysis based structural design technique Evolutionary Structural Optimization [ESO] as a way to understand or corroborate the performance factors that are significant in determining architectural form. ESO is very close conceptually to the dynamical system of matter and forces of growth itself. It has parallels both mathematical and metaphorical with natural evolution and morphogenesis so it has been poignant to apply the approach to a formal architectural case study in which the generative influence of these processes is inherent.
keywords Evolutionary Structural Optimization; Finite Element Analysis; Architect Engineer Collaboration; Performance-Based Design; Form Finding
series eCAADe
last changed 2022/06/07 07:54

_id acadia04_150
id acadia04_150
authors Clarke, Cory
year 2004
title The Siren's Call
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 150-161
doi https://doi.org/10.52842/conf.acadia.2004.150
summary This paper presents an account of our research and development of processes providing seamless transition from design to fabrication. The narrative of our design, development, and prototyping experi¬ments spans seven years, including our current project, the Trusset software/structural system. Trusset is a combined building system and agent-based software design tool. The building system is based on a differential space-truss designed for fabrication entirely with computer numerically controlled (CNC) linear cutting devices, such as laser cut¬ters or three-axis mills. The software component is a set of agent-based design tools for developing surfaces and envelopes formally suitable to be built using the space-truss structure. Developed in parallel, the soft¬ware and building components combine within the Trusset system to provide a seamless pipeline from design to fabrication and assembly. The story of the development of software components and structural system, leading to the Trusset, act as a means of discussing the larger issues framing the research: the potential pitfalls and benefits of design and fabrication integration via the computer.
keywords Fabrication, Space-truss, Structure
series ACADIA
email
last changed 2022/06/07 07:56

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id acadia04_020
id acadia04_020
authors Eastman, Charles
year 2004
title New Methods of Architecture and Building
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 20-27
doi https://doi.org/10.52842/conf.acadia.2004.020
summary Three conditions exist that are likely to lead to significant restructuringof the construction industry. These are (1): the recognition that traditional contracting practices are inefficient and costly to the client, (2) the growing availability of information-rich 3D parametric modeling, and (3) the strong interest in integrating the issues of design and fabrication. Some aspects of these conditions are examined using two examples: parametric design and integration in steel structural design, and in fabrication-level modeling of precast concrete. The implications of these changes are explored.
series ACADIA
last changed 2022/06/07 07:55

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
doi https://doi.org/10.52842/conf.acadia.2008.072
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id 406caadria2004
id 406caadria2004
authors Hyun-Young Yeon, Uk Kim, Young-Kyou Soung
year 2004
title A Structural Planning Modeler of Informal Shape Building Design
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 647-654
doi https://doi.org/10.52842/conf.caadria.2004.647
summary This study aims to implement a design tool that can help architects predict space configuration along with structural member location in complex shape buildings. Architects can use the tool to confirm spatial allocations and configurations as they apply structural members to building shape. The modeler is based on the object hierarchy of structural members in order to grab and to edit them conveniently.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 41f0
id 41f0
authors Janusz Rebielak
year 2004
title NUMERICAL MODELS OF CHOSEN TYPES OF DOME STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 239-249.
summary The paper presents basic description of shaping processes of tension-strut structures developed by the author and proposed as lightweight structural systems for large span dome covers. In the paper are presented two basic types of the systems, which are built mainly by means of tetrahedral and octahedral modules with the V-shaped bar sets. For all the offered types of structures there are prepared suitable numerical models defined in the programming language Formian. Application of these numerical models considerably accelerates design process of these complex forms of spatial structures and makes possible an easier co-operation between all designers involved in this process.
series other
type normal paper
email
last changed 2005/04/08 17:17

_id 916b
id 916b
authors Janusz Rebielak
year 2004
title SHAPING OF STRUCTURAL SYSTEMS OF HIGH-RISE BUILDINGS
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 341-350.
summary Design of an efficient and suitably rigid support structure of a tall building is constantly a challenge for architects and engineers. Recently this challenge is enormously increased by the safety requirements conditioned by numerous emergency reasons. Among others one should mention here about effects of fire or a terrorist attack. The complex forms of structural systems have to be examined in many ways. Comprehensive analyses of these systems are carried out by application of suitable numerical models of these systems. The paper contains examples of shapes of structural systems proposed by the author together with definitions of their numerical models prepared in the programming language Formian.
series other
type normal paper
email
last changed 2005/04/07 15:47

_id acadia04_230
id acadia04_230
authors Johnson, Scott
year 2004
title Linking Analysis and Architectural Data: Why It's Harder than We Thought
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 230-243
doi https://doi.org/10.52842/conf.acadia.2004.230
summary This paper considers high-level, architecturally oriented repre­sentations, like Building Information Models (BIMs), and examines the difficulty of integrating analyses with such representations. Structural analysis is selected as a sample analysis domain, and is examined by integrating a structural analysis into the test implementation of a program that utilizes architecturally oriented elements. A fundamental problem is found to be that architecturally oriented elements are inappropriate for structural analysis. Methods for sequentially analyzing architectural elements are discussed, but are found to be inadequate. Accurate analysis requires analyzing the entire structure at once using a representation specific to structural analysis. A method for generating a structural representation based on the architectural representation is discussed, but the process is not simple. The process is complicated by the fact that architectural elements and structural elements do not correspond in a one-to-one or even a one-to-many manner. An accurate structural representation may even require semi-fictitious elements not corresponding to actual physical components. These findings are believed to be true for other analysis domains, as well.
keywords Representations, Building Information Models, Proteus, structural analysis, finite elements
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia04_100
id acadia04_100
authors Liapi, Katherine
year 2004
title A computer Based System for the Design and Fabrication of Tensegrity Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 100-109
doi https://doi.org/10.52842/conf.acadia.2004.100
summary Tensegrity structures are composed of tension compression com­ponents, where the compression components (bars) are discontinu­ously enclosed within continuous tensile components (cables). From an engineering point of view, a tensegrity structure is characterized by geometric non-linearity and large displacements under loading. Therefore, its prestressed shape and deformation under loading are the result of the combined effect of the geometric parameters that determine the initial configuration of the structure, the level of pre­stress applied to cables, and the material properties of the compo­nent members of the structure. A method for generating the initial geometric configuration of tensegrity structures composed of tenseg­rity units and a parametric expression of this geometry have already been developed. A novel technology that makes possible the construction of tensegrity structures from the on-site assembly of deployable tensegrity units, which are fur­nished with a simple mechanism that permits bar-elongation, and, as a result, an increase of the prestress applied to the cables of each unit, is also under development. Also under development is a static analysis method that takes into account the above method for prestressing cables. This paper discusses the features of a system that supports the combined geometric and structural design of tensegrity structures, and integrates a graphical interface to display: a) models of initial geometry, b) geometry of the structure after prestress and loading are applied, and c) magnitude of forces applied to the structure’s component members (bars and cables). The system also provides numerical data to be used in component fabrication, and is therefore expected to become a very valuable tool for the design and construction of tensegrity structures.
series ACADIA
last changed 2022/06/07 07:59

_id sigradi2004_071
id sigradi2004_071
authors Marcelo Payssé; Magela Bielli; Juan Pablo Portillo; Fernando Rischewski
year 2004
title Proyecto de automatización de cálculos estructurales para programas cadî, uso de herramientas informáticas en la enseñanza del cálculo estructural en la facultad de arquitectura [Automation Project of Structural Calculations for CAD Programs - Use of Digital Tools for Structural Calculations in the School of Architecture]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper describes the implementation of Automated Structural Calculations For CAD Programs. We aim to develop a newly conceived software prioritizing the analysis and structural design in the conceptual aspect, linking the calculation with the usual graphic procedures by means of a specific application for local education methodology, that will be intellectual property of our University. It refers the methodology applied in the implementation of the program and the pedagogical aspect we considered. The software is developped as a macro programmed in open source code (Visual Basic Application) with data-input and data output generated in AutoCAD 2000. The specific objectives are: to obtain significant improvements in the habitual resolution standards of complex exercises, to obtain suitable software with free distribution for academic purposes with minimum costs and develop an adequate instrument to the specific architects . work modality in our faculty.
keywords Academic experiences, structural calculation, structural representation
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia04_126
id acadia04_126
authors Olsson, Pierre
year 2004
title STATIC EIGENVALUE ANALYSIS AS AN AID IN FURNITURE DESIGN
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 126-137
doi https://doi.org/10.52842/conf.acadia.2004.126
summary In the design process, knowledge of structural mechanics is often reduced to its being used to determine whether the object that has been designed is sufficiently strong. Strength testing indicates this directly on a yes or no basis, whereas computations are able to compare the level of stress with the strength of the material. Understanding the interplay between load, form, and material which structural mechanics is able to provide can be of considerable and far-reaching importance, both at an early conceptual design stage and while developing parts and details. The aim of this paper is to show how structural mechanics (in particular, static eigenvalue analysis) can be used to create work methods that provide a common language between the designer and the engineer during the design process. A case study is presented in which the Finite Element Method (FEM) was used to perform static eigenvalue analyses aimed at facilitating a collaborative furniture design process in the creation of a shell-shaped chair. Analysis of this sort was chosen because it can be used in a sketch-like manner. The designer found it easy to incorporate the results of the analysis into his own sketching work. It also enabled him to see how different design changes affected the overall structural behaviour of the chair without him having to create a full-scale prototype for physical testing.
keywords CAE, design aid, FEM, furniture, static eigenvalue analysis
series ACADIA
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_411888 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002