CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id ecaade2015_161
id ecaade2015_161
authors Papasarantou, Chrissa; Kalaouzis, Giorgos, Pentazou, Ioulia and Bourdakis, Vassilis
year 2015
title A Spatio-Temporal 3D Representation of a Historic Dataset
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 701-708
doi https://doi.org/10.52842/conf.ecaade.2015.1.701
wos WOS:000372317300076
summary Previous research (Bourdakis et al, 2012; Papasarantou et al, 2013) dealt with the problem of creating information visualisation systems capable of combining historical data of MUCIV's database and developing strategies that embed the non-spatial data in spatial models. The database was primarily designed as an experimental flexible spatio-temporal configuration of dynamic visual structures generating a variety of narrations through interaction.The attempt of producing a legible configuration driven by a number of criteria, led to the proposition of two different arrangements, namely the linear and radial array. The aim of this paper is to present the next step on the visualization after redefining both the way that thematic axes and data are visualized and arranged/scattered. Alternate configurations are investigated, based also on theoretical analysis on the conceptualization and perception of information visualization systems (Card et al 1999, Ware, 2004).
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=74178dba-702a-11e5-aa5b-67bfe1e6502f
last changed 2022/06/07 08:00

_id sigradi2004_363
id sigradi2004_363
authors Eleanna Cadalso; Alejandro Haiek Coll; Pedro Soza Ruiz
year 2004
title Graficando estructuras de conocimiento: Diagramas matriciales, infomapas, cartografias y estructuras de organización cognitiva [Representing Knowledge Structures: Matrix Diagrams, Infomaps, cartographies and Structures of Cognitive Organization]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This investigation approaches graphical representation systems as mechanisms that provide a greater level of expansion for the acquirement, production and transmission of knowledge. It serves as a digital educational instrument that connects to the academic platform and assists students and professors allowing them to experiment with different operational components directly form a user.s interface. The device has a Registration and Temporal Evaluation Structure, which allows students to retrieve information regarding the semester, course grades and student.s individual performance; a Search System, which downloads theoretical reference texts, practical tutorials, libraries of images, models or videos; an Interaction and Communication System, which benefits the exchange of information through forums and chats; and finally an Access, Interpretation and Data Transfer Map, which acts as a cartography of the process organizing simultaneously all the cognitive matrixes.
series SIGRADI
email
last changed 2016/03/10 09:51

_id 2005_771
id 2005_771
authors Gavrilou, Evelyn, Bourdakis, Vassilis and Charitos, Dimitris
year 2005
title Documenting the Spatial Design of an Interactive Multisensory Urban Installation
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 771-778
doi https://doi.org/10.52842/conf.ecaade.2005.771
summary The paper documents the design and implementation of an interactive multi-sensory environment (DETOUR) created by the interdisciplinary group VE_Design for an international open-air exhibition in Athens, Greece during the summer of 2004. The paper describes the creative process followed throughout the project and registers how computers, sensors and effectors have been utilised to either facilitate the creation of electronically mediated experiences or support the design. The architectural concept of the multi-sensory installation is analyzed in relation to its potential for creating communicative experiences as well as addressing physical form simulations. Notions such as ephemeral structures, parasites, social space, game as art and communication are discussed. The body – space interaction is investigated, enabling the team to elaborate on a modular construction. Finally, the impact of the work is discussed on the basis of recorded observations by visitors.
keywords Interactive Multi-Sensory Environment; Ephemeral Space; Public Art;Embodied Spatial Experience; Simulation of Physical Form.
series eCAADe
email
last changed 2022/06/07 07:51

_id 41f0
id 41f0
authors Janusz Rebielak
year 2004
title NUMERICAL MODELS OF CHOSEN TYPES OF DOME STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 239-249.
summary The paper presents basic description of shaping processes of tension-strut structures developed by the author and proposed as lightweight structural systems for large span dome covers. In the paper are presented two basic types of the systems, which are built mainly by means of tetrahedral and octahedral modules with the V-shaped bar sets. For all the offered types of structures there are prepared suitable numerical models defined in the programming language Formian. Application of these numerical models considerably accelerates design process of these complex forms of spatial structures and makes possible an easier co-operation between all designers involved in this process.
series other
type normal paper
email
last changed 2005/04/08 17:17

_id eaea2003_14-kardos
id eaea2003_14-kardos
authors Kardos, P.
year 2004
title Interactive “Sketching” of the Urban-Architectural Spatial Draft
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 65-70
summary The recent innovative information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education support the development of image communication methods on the basis of interactivity. The presented method of perceptual iconic simulation is based on the principle of an analogue-digital model cinemascope simulation of the urban space in laboratory conditions in real time and real model environment in a natural horizon. In architectural teaching and in urban spatial structures design it enables a continual semantic evaluation of the graphic output and its further multimedia processing.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id acadia03_040
id acadia03_040
authors Katherine A. Liapi, Katherine A. and Kim, Jinman
year 2003
title A Parametric Approach to the Design of a Tensegrity Vaulted Dome for an Ephemeral Structure for the 2004 Olympics
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 301-309
doi https://doi.org/10.52842/conf.acadia.2003.301
summary Tensegrity, defined as “tensional integrity,” is central to the design of a semi-open exhibition space that was submitted as an entry to the international competition for the design of “Ephemeral Structures for the City of Athens,” in the context of the 2004 Olympic Games. The main feature of the proposed exhibition space is a vaulted dome composed of interconnected detachable and deployable tensegrity units. The most challenging aspect in the design of the tensegrity vault was the generation of alternative spatial configurations for form exploration and study. For this purpose a mathematical code has been developed that links all the parameters that affect the design of tensegrity vaults. The code also allows for the parametric graphical generation of the vault by displaying geometric information in a 3D environment. This paper discusses the geometric basis of the code and its usefulness in the morphological study of the tensegrity vaulted dome for the proposed ephemeral structure. The mathematical code has been shown to significantly facilitate the study of various preliminary configurations of tensegrity vaulted structures.
series ACADIA
email
last changed 2022/06/07 07:52

_id a0d4
id a0d4
authors Rosa Enrich, Andrea Carnicero, Gustavo Fornari & Pedro Orazzi
year 2004
title ANALYSIS AND EVALUATION OF MATHEMATICAL LEARNING STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Spetial Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 13-21.
summary Abstract: A series of practical tasks have been done under the general name of “Surfaces in invisible cities”. Each task was based on a story taken from the book The Invisible Cities by Italo Calvino. The research carried out allows to design a pedagogical project which makes evident , generates and connects several intentions, motivations and learning structures. It proposes the use of multi- level languages and readings. Therefore, each task takes more time than that of the proposed mathematical class. Its implementation generates a broader view than that seen at the time of design.

From the detailed analysis of the results obtained, the following diverse pedagogical aspects of this work project arise: a. The use of several multiple intelligence: Howard Gardner (1985) found that a man has several distinct intelligence types among which Logical-Mathematical; Spatial; Linguistic -oriented; Musical; Intra-personal; Kinesthetic-Corporal; Interpersonal stand out. Only those types used in the task will be analyzed, making a brief description of each type. b. The architectonic-city planning aspects: architectonic-city planning interpretation of the space imagined after reading the text, with the purpose of identifying figures, shapes, volumes and colors which are expressed via an analogous space. They consist of visual, architectonic and territorial speculations without a rigorous spatial theory and it is pretended that they possess a technical precision at mathematical concept level. c. The mathematical contents: a study of the conical and square shapes present in the designs done and used in a creative manner in students’ compositions following the reading of the story chosen is carried out. An analysis of shapes is performed and mathematical problems are posed within the design context.

Traditional sketching methods have been used in task solving and the possibilities offered by the virtual tools are analyzed.

Emphasis has been put on the vertical and horizontal interchanges in the Chair, generating changes in knowledge transmission perspectives, thus allowing the sharing of contents, abilities and resources. The architectonic work imagined and created by the students will focus on these different working lines creating a harmonious and significant whole. The work is the result of multiple connections and creative proposals.

keywords city, geometry, multiple intelligence
series other
type normal paper
email
last changed 2005/04/07 12:46

_id 2004_586
id 2004_586
authors Voigt, A., Martens, B. and Linzer, H.
year 2004
title City Simulator - A Multi-dimensional VR-Simulation Environment
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 586-592
doi https://doi.org/10.52842/conf.ecaade.2004.586
summary Whether in splendid rural isolation or in an urban area, settlement and building structures always are exposed to the public. Questions as to the future design of our vital space basically always concern the public and thus call for a great deal of discussion. Launching a well-balanced debate between all those involved in the planning and design process requires clear exemplification of urban-spatial visions by means of simulation. A simulation device - called “City Simulator” - suited to conveying the multitude of spatial relations within the urban configuration and for developing urban-spatial ideas would fulfil such expectations. The complexity of the information required in this context can be coped with effectively by means of computer-aided simulation techniques focusing on digital city models. Thus the implementation of a “City Simulator” may be regarded as a decisive tool for the purpose. As those involved in the process normally consider themselves absolute novices within the context of complex planning processes, the simulator will to some extent act as a “translation machine”. This paper is based on a project proposal which has been submitted by the authors aimed at the acquisition of a “City Simulator” at Vienna University of Technology in the near future.
keywords 3D City Models; Simulation; Virtual Reality; Visualization; Communication
series eCAADe
email
last changed 2022/06/07 07:58

_id ddss2004_ra-33
id ddss2004_ra-33
authors Diappi, L., P. Bolchim, and M. Buscema
year 2004
title Improved Understanding of Urban Sprawl Using Neural Networks
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 14020-2408-8, p. 33-49
summary It is widely accepted that the spatial pattern of settlements is a crucial factor affecting quality of life and environmental sustainability, but few recent studies have attempted to examine the phenomenon of sprawl by modelling the process rather than adopting a descriptive approach. The issue was partly addressed by models of land use and transportation which were mainly developed in the UK and US in the 1970s and 1980s, but the major advances were made in the area of modelling transportation, while very little was achieved in the area of spatial and temporal land use. Models of land use and transportation are well-established tools, based on explicit, exogenouslyformulated rules within a theoretical framework. The new approaches of artificial intelligence, and in particular, systems involving parallel processing, (Neural Networks, Cellular Automata and Multi-Agent Systems) defined by the expression “Neurocomputing”, allow problems to be approached in the reverse, bottom-up, direction by discovering rules, relationships and scenarios from a database. In this article we examine the hypothesis that territorial micro-transformations occur according to a local logic, i.e. according to use, accessibility, the presence of services and conditions of centrality, periphericity or isolation of each territorial “cell” relative to its surroundings. The prediction capabilities of different architectures of supervised Neural networks are implemented to the south Metropolitan area of Milan at two different temporal thresholds and discussed. Starting from data on land use in 1980 and 1994 and by subdividing the area into square cells on an orthogonal grid, the model produces a spatial and functional map of urbanisation in 2008. An implementation of the SOM (Self Organizing Map) processing to the Data Base allows the typologies of transformation to be identified, i.e. the classes of area which are transformed in the same way and which give rise to territorial morphologies; this is an interesting by-product of the approach.
keywords Neural Networks, Self-Organizing Maps, Land-Use Dynamics, Supervised Networks
series DDSS
last changed 2004/07/03 22:13

_id 2004_435
id 2004_435
authors Jemtrud, Michael
year 2004
title Between Mediation and Making CIMSp: A Technoètic Modus Operandi
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 435-442
doi https://doi.org/10.52842/conf.ecaade.2004.435
summary The following paper describes an ongoing research project whose goal is to define a scalable, hybrid production and deployment protocol (CIMSp) for the creation of virtual environments (VE). Ultimately, the aim is to establish a creative workflow and infrastructure that embodies architectural and urban design activity as practiced by the research unit. The objective of the present paper is to schematically outline the current state of the research and its practical and theoretical context for further development. A theoretical position will be stated which assumes that the content, tool, epistemological, and speculative realms are consubstantial (technoèsis). The practical endeavour is to create the informational and embodied temporal--spatial condition of possibility for the imaginative production of cultural artifacts. It must accommodate varying individual and collaborative forms and styles of making and no presumption of a self-enclosed and referential system is made. A critical position is particularly compelling when this production is immersed in technological modalities of making where information and embodiment are inextricably intertwined. CIMSp is based on the workflow from acquisition and creation to output and storage. The work environment is comprised of a select set of software applications and visualization technologies. Secondly, an XML-based content and information management system is under construction to ensure project quality control, rigorous documentation practices, and bi-directional knowledge feedback procedures to enable an effective and resource-full workflow. Lastly, scalability of output modalities for use in the design process and for final presentation from WWW deployment to a high-resolution collaborative work environment (CWE) is being developed. The protocol is a multiuser mode of creation and production that aims to transform the technologies and their interrelation, thus dramatically impacting the creative process and intended content. It is a digital production workflow that embodies intensive visualization criteria demanded by the end users. The theoretical and practical intention of CIMSp is to provisionally structure the collaborative creative process and enable a choreographed movement between the realms of the technologically mediated and made in the pursuit of significant digital content creation.
series eCAADe
last changed 2022/06/07 07:52

_id ddss2004_d-111
id ddss2004_d-111
authors Kitazawa, K. and M. Batty
year 2004
title Pedestrian Behaviour Modelling
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 111-126
summary This paper introduces a study of pedestrian behaviour modelling which incorporates ideas about agent-based systems and the traffic models based on the utility-maximization theory. The aim of this study is to examine the applicable scope of one of the basic assumptions in existing spatial behaviour models; the route with shortest distance maximizes the utility of each pedestrian’s travel. Although shortest-path models have been widely used in the field of Traffic management to predict routing behaviour, there can be seen a lot of erratic behaviour in urban areas, shopping migration behaviour for instance, which can not be explained by them. Thus, it is important to identify other possible influential factors on their utility maximization process in order to develop more explicable models of pedestrian movements. In this study, we implemented a simulation model using the shortest-path model as one of evaluation criteria of Genetic Algorithms (GA) to computationally emulate retail movements of shoppers in a big shopping centre and to test the accuracy of the model by comparison between the routes estimated by the model and actual trajectories of shoppers. This simulation system will be used as a platform for further modelling.
keywords Pedestrian Modelling, Retail Movement, Shortest-Path, Genetic Algorithms
series DDSS
last changed 2004/07/03 22:13

_id sigradi2004_197
id sigradi2004_197
authors Anja Pratschke
year 2004
title Pinhaldigital, estrutura mnemônica e processos multimídia nas fazendas de café: História, arquitetura e tecnologia [Pinhaldigital, Mnemonic Structure and Processes of Multimedia in Coffee Farms: History, Architecture and Technology]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This article has two aims, first to discuss the use of mnemonic structures in multimedia processes with complex contents in the example of the research project and activity PinhalDigital. Moreover it intends to describe the transdisciplinar method used for the production of the application, developing didactic extracurricular and interdisciplinary activities in the areas of history, architecture and technology through the use of multimedia construction processes. PinhalDigital was born of an initiative between the University of São Paulo, the Federal University of São Carlos and the Fazenda Pinhal, as objective to structuralize and to organize the diverse layers and the multiple aspects of the rich history of the Fazenda Pinhal in São Carlos. As a mnemonic basis was chosen a painting that represents the Fazenda Pinhal in 1900 by famous painter Benedicto Calixto de Jesus, which almost realistic portrays shows diverse objects and important and identification spaces of the diverse aspects and activities carried out through this plantation.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddss2004_ra-279
id ddss2004_ra-279
authors Bax, M.F.Th. and H.M.G.J. Trum
year 2004
title On the Notion of Level in Architecture
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 279-292
summary The notion of Level (in a scale of Levels) is probably the most authentic notion in Architecture. Already in the work of Vitruvius the notion is implicitly present in the triad ‘ordinatio – symmetria – eurythmia’. In more recent times, the notion always appears in relation with hierarchical organization as a means of control of quality. However used in drawings and in architectural discourse, the term lacks precision; there are many types of level like abstraction, specification, dependency, resolution levels etc., but no operational definition can be found as a notion that structures architectural objects and design processes simultaneously in a consistent way. Defining this notion of Level is the purpose of this paper. An example of application in an architectural decision-making process completes the paper.
keywords Levels, Hierarchy, Architecture, Composition, Complexity, Control
series DDSS
last changed 2004/07/03 22:13

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
doi https://doi.org/10.52842/conf.acadia.2004.088
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id 2004_248
id 2004_248
authors Chang, Teng-Wen and Woodbury, Robert F.
year 2004
title GEOMETRY IN HIGHLY STRUCTURED DESIGN SPACES
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 248-254
doi https://doi.org/10.52842/conf.ecaade.2004.248
summary The Australian branch of the SEED project created a new formalism for design spaces in which the fundamental structuring operator is information specificity, formally characterised as subsumption. Here design space navigation is composed as combinations of the primitive operators of resolution, unification, anti-unification, search, query and hysterical undo. The structures needed to support such a view are highly constrained in a mathematical sense and it is in these constraints that the problems for representation of geometry arise. The research challenge is to add the formal design space exploration constraints into an existing geometric representation scheme or alternatively to discover a new scheme in which the constraints are realized. Based on Typed Feature Structures (TFS), Geometric Typed Feature Structures (GTFS) are a representation scheme and method for performing the basic design space exploration operations on geometric objects. The crucial insight behind extending TFS to geometry is to discover useful algebraic structures of geometric objects affording the mathematics required of TFS. In this paper we describe Geometric Typed Feature Structures through one example of form: IOPSet. Our method of exposition is both mathematical and graphical: for each structure we will demonstrate both how it meets the necessary formal conditions as well as the sorts of form-sculpting operations it enables. An architectural example: insulated enclosure is used as a demonstration of subsumption operations over IOPSet. One alternative description of insulated enclosure using GTFS is also shown in the paper.
keywords Geometric Typed Feature Structures, SEED, Design Space Explorer, Geometric Design Information
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id ijac20032206
id ijac20032206
authors Cory Clarke; Phillip Anzalone
year 2004
title Trusset: Parallel Development of Software and Construction Systems for Space-Truss Structures
source International Journal of Architectural Computing vol. 2 - no. 2
summary This paper documents our current progress on theparallel development of a building system andcorresponding agent-based software design tools;together the two produce a seamless pipeline fromdesign to fabrication and assembly. The building systemis a clad differential space-truss designed forfabrication entirely with computer numericallycontrolled (CNC) linear cutting devices such as CNClaser cutters or two-axis mills. The softwarecomponent is a set of agent-based design tools fordeveloping surfaces and envelopes formally suitable tobe built using our space-truss system.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id 2004_286
id 2004_286
authors Datta, Sambit
year 2004
title A Representational Construct for Sharing Knowledge in Design Exploration
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 286-291
doi https://doi.org/10.52842/conf.ecaade.2004.286
summary Exploration with formal design systems comprise iterative processes for specifying problems, finding plausible and alternative solutions, judging the validity of solutions relative to problems and reformulating problems and solutions. These processes are knowledge intensive, collaborative and multidisciplinary in nature. Recent research efforts propose representational frameworks that allow for modeling of knowledge capture, knowledge sharing and knowledge reuse during designing. However, design remains a human enterprise: to be scalable and usable in design practice, formal symbolic representations need to be embedded within a broader framework of agent (human and computational) interaction. This paper argues that, for sharing and reusing knowledge between agents in design exploration, it is necessary to build an intermediary representational structure that bridges specialist interactions with exploration knowledge (the domain) and the symbol structures that represent them (the symbol substrate). The paper identifies the requirements of such an intermediary representation for the sharing of knowledge between design agents. These requirements are addressed through the development of a shared interaction construct, the feature node.
keywords Exploration, Design Knowledge, Interaction Model, Mixed-Initiative
series eCAADe
last changed 2022/06/07 07:55

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia04_076
id acadia04_076
authors Hanna, Sean
year 2004
title Modularity and Flexibility at the Small Scale: Evolving Continuous Material Variation with Stereolithography
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 76-87
doi https://doi.org/10.52842/conf.acadia.2004.076
summary In this paper, we introduce a technique by which the internal material properties of an object can be optimised at a microstructural level (5x10-5m) to counteract the forces that are applied to it. These can then be fabricated using the rapid prototyping method of stere­olithography. The proposed technique is analogous to principles of mass customization and takes advantage of a flexible module to cre­ate complex structures in a manner that is computationally efficient and effective. The process is two-staged, in which a genetic algorithm evolves the topology of the microstructure and a second algorithm incorporating Finite Element Analysis then optimises the geometry. The examples shown are designed specifically for the fabrication tech­nique, but the method and general principles are applicable to struc­tural problems at any scale.
keywords genetic algorithm, rapid prototyping, stereolithography, materials
series ACADIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_169252 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002