CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2004_paper15
id ascaad2004_paper15
authors Mallasi, Z.
year 2004
title Identification and Visualisation of Construction Activities’ Workspace Conflicts Utilising 4D CAD/VR Tools
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary This work addresses the problem arising on all construction sites: the occurrence of workspace interference between construction activities. From a site space planning context, this problem can lead to an inevitable roadblock to the progress of the scheduled construction operations. In real situations, when the spatial congestions occur, they could reduce productivity of workers sharing the same workspace and may cause health and safety hazard issues. The aim of this paper is on presenting a computer-based method and developed tool to assist site managers in the assignment and identification of workspace conflicts. The author focuses on the concept of ‘visualising space competition’ between the construction activities. The concept is based on a unique representation of the dynamic behaviour of activity workspace in 3D space and time. An innovative computer-based tool dubbed PECASO (Patterns Execution and Critical Analysis of Site-space Organisation) has been developed. The emerging technique of 4D (3D + time) visualisation has been chosen to yield an interesting 4D space planning and visualisation tool. A multi-criteria function for measuring the severity of the workspace congestions is designed, embedding the spatial and schedule related criteria. The paper evaluates the PECASO approach in order to minimise the workspace congestions, using a real case study. The paper concludes that the PECASO approach reduces the number of competing workspaces and the conflicting volumes between occupied workspace, which in turn produces better assessment to the execution strategy for a given project schedule. The system proves to be a promising tool for 4D space planning; in that it introduces a new way of communicating the programme of work.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id da71
id da71
authors Horne, Margaret
year 2004
title Visualisation of Martyr’s Square, Beirut
source CONVR2005 5th Conference of Construction Applications of Virtual Reality, ADETTI/ISCTE, Durham, UK, 12-13 September 2005
summary Solidere, a Lebanese joint-stock company, was created by government decree in 1994 to reconstruct Beirut city-centre. The company, a form of public-private partnership, has a majority share holding of former owners and tenants of city-centre property. Several projects are underway, including the redevelopment of Place des Martyrs, once the bustling heart of Beirut but badly damaged during the war. Urban planners in Beirut have recently developed a 3D computer model to visually describe the spatial characteristics of Martyr’s Square and its context, prior to inviting design proposals for an international competition. This paper describes issues pertaining to the development of the model to meet the needs of urban designers and town planners. It also considers potential future uses of the simulation, outlining areas for further research and development.
keywords Beirut, 3D Modelling, Visual Simulation, Town Planning
series other
type normal paper
email
last changed 2006/06/08 22:10

_id ddss2004_ra-177
id ddss2004_ra-177
authors Ballas, D., R. Kingston, and J. Stillwell
year 2004
title Using a Spatial Microsimulation Decision Support System for Policy Scenario Analysis
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 177-191
summary This paper discusses the potential of a spatial microsimulation-based decision support system for policy analysis. The system can be used to describe current conditions and issues in neighbourhoods, predict future trends in the composition and health of neighbourhoods and conduct modelling and predictive analysis to measure the likely impact of policy interventions at the local level. A large dynamic spatial micro-simulation model is being constructed for the population of Leeds (approximately 715,000 individuals) based on spatial microsimulation techniques in conjunction with a range of data, including 2001 Census data for Output Areas and sample data from the British Household Panel Survey. The project has three main aims as follows: (i) to develop a static microsimulation model to describe current conditions in Leeds; (ii) to enable the performance of ‘What if?’ analysis on a range of policy scenarios; and (iii) to develop a dynamic microsimulation model to predict future conditions in Leeds under different policy scenarios. The paper reports progress in meeting the above aims and outlines the associated difficulties and data issues. One of the significant advantages of the spatial microsimulation approach adopted by this project is that it enables the user to query any combination of variables that is deemed desirable for policy analysis. The paper will illustrate the software tool being developed in the context of this project that is capable of carrying out queries of this type and of mapping their results. The decision support tool is being developed to support policy-makers concerned with urban regeneration and neighbourhood renewal.
keywords Spatial Microsimulation, Spatial Decision Support Systems, Geotools
series DDSS
last changed 2004/07/03 22:13

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddss2004_d-269
id ddss2004_d-269
authors Beetz, J., J. van Leeuwen, and B. de Vries
year 2004
title Towards a Multi Agent System for the Support of Collaborative Design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 269-280
summary In this paper we are drafting the outline of a framework for a Multi Agent System (MAS) for the support of Collaborative Design in the architectural domain. The system we are proposing makes use of Machine Learning (ML) techniques to infer personalized knowledge from observing a users’ action in a generic working environment using standard tools such as CAD packages. We introduce and discuss possible strategies to combine Concept Modelling (CM)-based approaches using existing ontologies with statistical analysis of action sequences within a domain specific application. In a later step, Agent technologies will be used to gather additional related information from external resources such as examples of similar problems on the users hard disk, from corresponding work of team-members within an intranet or from advises of expert from different knowledge domains, themselves represented by agents. As users deny or reward resulting proposals offered by the agent(s) through an interface the system will be enhanced over time using methods like Reinforced Learning.
keywords Multi Agent Systems, Design & Decision Support Systems, Collaborative Design, Human Computer Interfaces, Machine learning, Data Mining
series DDSS
last changed 2004/07/03 22:13

_id ddss2004_ra-247
id ddss2004_ra-247
authors Bi, G. and B. Medjdoub
year 2004
title Hybrid Approach to Solve Space Planning Problems in Building Services
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 247-261
summary In this paper an object-based CAD programming is used to take advantage of standardization to handle the schematic design, sizing, layout for services in a building ceiling void. From the specification of the building 3D model, our software proceeds through different steps; from the determination of the standard number and size of fan coils to the generation of 3D solutions. In order to deal with more complex geometry and larger problems, we have used a hybrid approach: Case Based Reasoning (CBR) within Constraint Satisfaction Problem (CSP) approaches. In practice, engineers in building services use previous solutions and adapt them to new problems. CBR mirrors this practical approach and does help us to deal with increasingly complex geometry effectively, and meanwhile CSP has been used for layout adaptation. The results have shown that it is possible to define and implement standard solutions to produce designs comparable with current practice. The benchmarking exercise has underlined many advantages and made some suggestions for further development. This project is funded by The Engineering and Physical Sciences Research Council (EPSRC) in UK.
keywords Case-Based Reasoning, Constraint Satisfaction Problem, Ceiling Voids Layout, Complex Geometry, Large Problem
series DDSS
last changed 2004/07/03 22:13

_id ddss2008-33
id ddss2008-33
authors Charlton, James A.; Bob Giddings and Margaret Horne
year 2008
title A survey of computer software for the urban designprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Urban design is concerned with the shape, the surface and the physical arrangement of all kinds of urban elements, the basic components that make up the built environment, at the level of buildings, spaces and human activities. It is also concerned with the non-visual aspects of the environment, such as noise, wind and temperature and humidity. The city square is a particular urban element which can take many forms and its geometrical relationships such as maximum dimensions, ratio of width to length and building height to length have been analysed for centuries (Alberti 1475), (Vitruvius 1550), (Sitte 1889), (Corbett 2004). Within the current urban design process there are increasing examples of three dimensional computer representations which allow the user to experience a visual sense of the geometry of city squares in an urban landscape. Computer-aided design and Virtual Reality technologies have recently contributed to this visual assessment, but there have been limited attempts at 3D computer representations which allow the user to experience a greater sense of the urban space. This paper will describe a survey of computer tools which could support a more holistic approach to urban design and which could be used to simulate a number of urban texture and urban quality aspects. It will provide a systematic overview of currently available software that could support the simulation of building density, height, colour and style as well as conditions relating to noise, shading, heat, natural and artificial light. It will describe a methodology for the selection and filtering of appropriate computer applications and offer an initial evaluation of these tools for the analysis and representation of the three-dimensional geometry, urban texture and urban quality of city centre spaces. The paper is structured to include an introduction to the design criteria relating to city centre spaces which underpins this research. Next the systematic review of computer software will be described, and selected tools will undergo initial evaluation. Finally conclusions will be drawn and areas for future research identified.
keywords Urban design, Software identification, 3D modelling, Pedestrian modelling, Wind modelling, Noise mapping, Thermal comfort, VR Engine
series DDSS
last changed 2008/09/01 17:06

_id 0131
id 0131
authors Chiarella, Mauro
year 2004
title GEOMETRY AND ARCHITECTURE: NURBS, DESIGN AND CONSTRUCTION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 135-139.
summary Geometry regarded as a tool for understanding is perhaps the part of Mathematics which is the most intuitive, concrete and linked to reality. From its roots as a tool to describe and measure shapes, geometry as ‘the space science’ , has grown towards a theory of ideas and methods by means of which it is possible to build and study idealised models, not only from the physical world but also from the real world. In graphic architecture thought, geometry usually appears as an instrumental support for project speculation. Geometric procedures are presented as representational resources for the graphic testing of reflection and for the exposition of ideas in order to build a logical order as regards representation and formal prefiguration. The fast rise of computing in the last decades has made it possible for architects to work massively and in a graphic and intuitive way with mathematical representations of tridimensional geometry, such as the NURBS . These organic surfaces of free shapes defined by vectorial curves have allowed access to a rapid generation of complex shapes with a minumum amount of data and of specific knowledge.

The great development of modelling achieved by the digital media and the limitations in the technical and building areas and in the existence of materials which are coherent with the resultant shapes reveal a considerable distance between the systems of ideation and simulation characteristic of the computing era and the analogous systems of production inherited from the slow industrial development. This distance has been shortened by CAD/CAM systems, which are, however, not very accessible to the architectural field. If we incorporate to the development of these divergent media the limitations which are distinctive of the material resources and procedures of the existent local technology, the aforementioned distance seems even greater.

Assuming the metaphor of living at the threshold of two ages (industrial-computing, analogical-digital, material-virtual) and the challenge of the new conceptual and operational tools in our field, we work in the mixture, with no exclusions or substitutions, proposing (by means of the development of informational complements) some alternatives of work to approach the issue under discussion from the Architecture Workshop.

keywords Geometry, Design, NURBS, Unfolding, Pedagogy
series other
type normal paper
email
last changed 2005/04/07 12:51

_id 2004_333
id 2004_333
authors Donath, Dirk and Tonn, Christian
year 2004
title How to Design Colour Schemes? Conceptual Tools for the Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2004.333
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 333-341
summary The paper describes the concept and development of software to support the architectural design and planning of colour schemes for interiors and buildings. “Coloured Architecture” is a plausibility instrument for the formulation of colour scheme proposals for building interiors and elevations. In practice colours schemes are arrived at through the production of many different colour design studies before a final colour scheme is decided upon. With the help of intuitively usable light simulations, colour, material and spatial concepts can be assessed realistically. The development concept incorporates numerous aspects which must be considered in the selection of a colour scheme: colour schemes for built environments must be realisable . This initial development prototype already demonstrates the added value possible through the consequent use of CAAD: function, construction and not least design aspects have equal status and can be worked upon in direct relation with one another.
keywords CAAD, Colour Schemes, Architecture, Planning Process, Plausibility, Added Value, On Site Support
series eCAADe
email
last changed 2022/06/07 07:55

_id 2004_148
id 2004_148
authors Fatah gen. Schieck, A., Penn, A., Mottram, C., Strothmann, C., Ohlenburg, J., Broll, W. and Aish, F.
year 2004
title Interactive Space Generation through Play - Exploring Form Creation and the Role of Simulation on the Design Table
doi https://doi.org/10.52842/conf.ecaade.2004.148
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 148-158
summary In this paper we report on recent developments in ARTHUR: an approach to support complex design and planning decisions for architects together with the simulation of pedestrian movement and the integration of existing CAD tools on the design table. Following a brief introduction, past and current work that has taken a similar approach will be reviewed. Next we describe a scenario that integrates agent-based simulations of pedestrian movement with space creation, and then give an overview of the system before finally discussing findings related to recent user evaluation studies of the system. This paper suggests that the integration of simulated pedestrian movement on the design table, while going through a cycle of reflection-in-action, plays a vital role in exploring possible design solutions and encourages new and different ways of thinking about design problems.
keywords Tangible User Interface, Pedestrian Simulation, Collaboration, Augmented Reality (AR), CAD Integration
series eCAADe
last changed 2022/06/07 07:55

_id ascaad2004_paper16
id ascaad2004_paper16
authors Hassan, R.; K. Jorgensen
year 2004
title Computer Visualizations in Planning
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary A wide range of visualizations have been developed and implemented as tools for urban simulations and visual impact assessment. These include: plans, diagrams, elevations, perspective sketches, renderings, modified photographs (photo renderings and photomontages), slide projections, scale models, movies, videotapes and computer graphics. In the last decade, graphical computer applications have proven to be an increasingly supportive tool in visualization and manipulation of graphical material. This study presents the state of the art of computer visualization in planning. More specifically, the use of web-based computerized visualizations for landscape visual simulation, with the aim to develop a system of visualization techniques as an aid to communicating planning and design scenarios for historically important landscapes and urban places, with particular attention to the city of Nablus in Palestine. This has led to the evaluation of possibilities and potentials of computer use in this field, and to the definition of the visual problems and challenges of the city of Nablus. This study will argue what extra one can draw from computerized visualizations, what is likely to be its impact on future planning and design research, and what this visualization experience really means for historical important locations as in Nablus. The study demonstrates that computerized visualizations can be a powerful tool in representing a cityscape in three-dimensions from different angels. Visualizations will allow better understanding of the components of the city, its landscapes, city features and the process of change. In this way it may provide new and better platforms for public participation in planning.
series ASCAAD
email
last changed 2007/04/08 19:47

_id cf2009_poster_09
id cf2009_poster_09
authors Hsu, Yin-Cheng
year 2009
title Lego Free-Form? Towards a Modularized Free-Form Construction
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary Design Media is the tool designers use for concept realization (Schon and Wiggins, 1992; Liu, 1996). Design thinking of designers is deeply effected by the media they tend to use (Zevi, 1981; Liu, 1996; Lim, 2003). Historically, architecture is influenced by the design media that were available within that era (Liu, 1996; Porter and Neale, 2000; Smith, 2004). From the 2D plans first used in ancient egypt, to the 3D physical models that came about during the Renaissance period, architecture reflects the media used for design. When breakthroughs in CAD/CAM technologies were brought to the world in the twentieth century, new possibilities opened up for architects.
keywords CAD/CAM free-form construction, modularization
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id 2004_435
id 2004_435
authors Jemtrud, Michael
year 2004
title Between Mediation and Making CIMSp: A Technoètic Modus Operandi
doi https://doi.org/10.52842/conf.ecaade.2004.435
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 435-442
summary The following paper describes an ongoing research project whose goal is to define a scalable, hybrid production and deployment protocol (CIMSp) for the creation of virtual environments (VE). Ultimately, the aim is to establish a creative workflow and infrastructure that embodies architectural and urban design activity as practiced by the research unit. The objective of the present paper is to schematically outline the current state of the research and its practical and theoretical context for further development. A theoretical position will be stated which assumes that the content, tool, epistemological, and speculative realms are consubstantial (technoèsis). The practical endeavour is to create the informational and embodied temporal--spatial condition of possibility for the imaginative production of cultural artifacts. It must accommodate varying individual and collaborative forms and styles of making and no presumption of a self-enclosed and referential system is made. A critical position is particularly compelling when this production is immersed in technological modalities of making where information and embodiment are inextricably intertwined. CIMSp is based on the workflow from acquisition and creation to output and storage. The work environment is comprised of a select set of software applications and visualization technologies. Secondly, an XML-based content and information management system is under construction to ensure project quality control, rigorous documentation practices, and bi-directional knowledge feedback procedures to enable an effective and resource-full workflow. Lastly, scalability of output modalities for use in the design process and for final presentation from WWW deployment to a high-resolution collaborative work environment (CWE) is being developed. The protocol is a multiuser mode of creation and production that aims to transform the technologies and their interrelation, thus dramatically impacting the creative process and intended content. It is a digital production workflow that embodies intensive visualization criteria demanded by the end users. The theoretical and practical intention of CIMSp is to provisionally structure the collaborative creative process and enable a choreographed movement between the realms of the technologically mediated and made in the pursuit of significant digital content creation.
series eCAADe
last changed 2022/06/07 07:52

_id 9e09
id 9e09
authors June-Hao Hou
year 2004
title SURF_TM: A SURFACE SYNTHESIZER FOR ARCHITECTURAL FORMS
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 359-369.
summary Parametric equation is one of the possible ways to generate free-form architecture in modern age. When working with mathematical software, designers need a way to bring surface mesh to CAD for further design. Surf_TM is an supplemental tool for AutoCAD to import and manipulate surface mesh data from Mathcad. Accompanying with a course taught in Harvard Design School, students gain knowledge in mathematics and use parametric equation as a design tool. This paper elaborates details of the course, the tool, how they work together, and example applications.
series other
type normal paper
email
last changed 2005/04/07 15:49

_id sigradi2004_367
id sigradi2004_367
authors Khaled K. Tarazi
year 2004
title The fifth elevation: Effects of digital graphic design and printing technologies on the urban fabric in developing countries
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary The paper reports on a study that identifies the effects of current advertising and printing technologies on urban spaces in developing countries. The complexities of these advertising applications form a complicated hierarchical web that requires an investigation of surface- volume-context relationships to minimize the tension between the graphical message and the urban fabric. Regressive application of technology-based graphic design and advertisement in the form of billboards and signage, form a new layer identified as the fifth elevation. The study endeavors for positive consequences of such elevations and differentiates between chaos and complexity. Consequently, the study categorizes various advertising schemes and recommends short-term guidelines to reduce chaotic amalgamation. Several design factors and new advertising schemes are proposed to sustain cultural and visual coherency of urban spaces. When applied, these recommendations could prove useful for many cities in the Middle East due to planning, cultural, economical, and religious, similarities.
keywords Graphic design, printing technologies, urban fabric, advertising concepts, billboards
series SIGRADI
email
last changed 2016/03/10 09:53

_id ddss2004_d-157
id ddss2004_d-157
authors Krafta, R.
year 2004
title Space is the Machine, with a Ghost Inside
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 157-173
summary The purpose of this paper is to report efforts towards the construction of a model for urban spatial dynamics simulation, based on multi-agents and space. The underlying idea is to have urban space producers and consumers operating in a two-layer, two-circuit model. The first layer holds urban space and its successive transformations; a second layer contains agents related to space; the first circuit simulates space production, and a second one simulates space consumption. Relationship between layers is represented as objective spatial features that agents are submitted to (the machine) and subjective meanings agents attach to each spatial feature (the ghost). While space works always in the same way, meanings vary according to each agent’s background and context. Relationships between circuits are represented by means of a market game in which producers try to maximize their profits by gambling with their risks, whereas consumers try to foresee the spatial distribution of local externalities that maximizes their utilities and investments. Urban Spatial Features are captured through centrality and land use patterns; every single agent’s action leads to changes in both patterns. Producers’ profit is a function of built form location. Consumers’ local externalities are concerned basically with present and future services. The model iteration is twofold: first it generates and allocates a number of built forms within a previously determined spatial system (a cellular matrix, for example), and second it allocates users to built forms. Population of users have its social profile and growth rate externally determined. Built form allocation is decided on the basis of a combination of profitXrisk perspectives. Users’ locational choice is supported by accessibility to services and present/future neighbourhood profile. Built form allocation works as parameter for users’ locational assessment, whereas users’ choices are used as parameters for developers. The model tends to adjust itself, in terms of quantities and types of built forms to be erected, although through a market lag of some iterations. Allocations are always made through weighted draws, so that mutations (non deterministic allocations) do occur.
keywords Urban Morphology, Urban Growth, Simulation
series DDSS
last changed 2004/07/03 22:13

_id 403caadria2004
id 403caadria2004
authors Magdy M. Ibrahim, Robert J. Krawczyk & George Schipporiet
year 2004
title A Web-Based Approach to Transferring Architectural Information to the Construction Site Based on the Bim Object Concept
doi https://doi.org/10.52842/conf.caadria.2004.613
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 613-622
summary The current means of transferring architectural data to the construction site depends mainly on the drawing either manually or electronically drafted both in physical or digital formats. The printed or manually drafted drawing is being replaced with the digital version that can be accessed with a PDA. There are many benefits of the digital form over the physical form. However the full potential of this medium has not yet been fully exploited. The new CAD paradigm, BIM (Building Information Modeling), suggests that all the building information can be represented as a digital database that constitutes the information about the building elements as three-dimensional geometry, as well as, properties and specifications in the form of objects. This paper describes the process to convey the information about the CAD objects to the construction site through the web by extracting the properties of the objects into an XML file which can be queried for the needed data.
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_85786 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002