CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 347

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

_id ddss2004_ra-99
id ddss2004_ra-99
authors Göttig, R., J. Newton, and S. Kaufmann
year 2004
title A COMPARISON OF 3D VISUALIZATION TECHNOLOGIES AND THEIR USER INTERFACES WITH DATA SPECIFIC TO ARCHITECTURE
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 99-111
summary Contemporary advanced virtual reality systems use different stereoscopic 3D visualization technologies. In this study, VR systems from one projection wall up to VR systems with six projection walls have been evaluated. Besides the optical properties tested with architectural 3D models, the user interfaces have been analyzed with reference to exact and intuitive control abilities. Additionally, the workflow of an early architectural design process with CAAD generated 3D models and VR visualization techniques was analyzed. It turns out that current VR systems exhibit shortcomings in visual and spatial representations, as well as tools for an early design process.
keywords 3D-Systems, Virtual Reality, Powerwall, Holobench, HMD, CAVE, User Interfaces, Visual Display Qualities, Design Process
series DDSS
type normal paper
last changed 2004/07/03 23:02

_id 2004_435
id 2004_435
authors Jemtrud, Michael
year 2004
title Between Mediation and Making CIMSp: A Technoètic Modus Operandi
doi https://doi.org/10.52842/conf.ecaade.2004.435
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 435-442
summary The following paper describes an ongoing research project whose goal is to define a scalable, hybrid production and deployment protocol (CIMSp) for the creation of virtual environments (VE). Ultimately, the aim is to establish a creative workflow and infrastructure that embodies architectural and urban design activity as practiced by the research unit. The objective of the present paper is to schematically outline the current state of the research and its practical and theoretical context for further development. A theoretical position will be stated which assumes that the content, tool, epistemological, and speculative realms are consubstantial (technoèsis). The practical endeavour is to create the informational and embodied temporal--spatial condition of possibility for the imaginative production of cultural artifacts. It must accommodate varying individual and collaborative forms and styles of making and no presumption of a self-enclosed and referential system is made. A critical position is particularly compelling when this production is immersed in technological modalities of making where information and embodiment are inextricably intertwined. CIMSp is based on the workflow from acquisition and creation to output and storage. The work environment is comprised of a select set of software applications and visualization technologies. Secondly, an XML-based content and information management system is under construction to ensure project quality control, rigorous documentation practices, and bi-directional knowledge feedback procedures to enable an effective and resource-full workflow. Lastly, scalability of output modalities for use in the design process and for final presentation from WWW deployment to a high-resolution collaborative work environment (CWE) is being developed. The protocol is a multiuser mode of creation and production that aims to transform the technologies and their interrelation, thus dramatically impacting the creative process and intended content. It is a digital production workflow that embodies intensive visualization criteria demanded by the end users. The theoretical and practical intention of CIMSp is to provisionally structure the collaborative creative process and enable a choreographed movement between the realms of the technologically mediated and made in the pursuit of significant digital content creation.
series eCAADe
last changed 2022/06/07 07:52

_id caadria2005_b_5c_b
id caadria2005_b_5c_b
authors Martin Tamke
year 2005
title Crossing The Media
doi https://doi.org/10.52842/conf.caadria.2005.364
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 364-374
summary An open-ended, diversified and critical approach of architectural design, using different form of ideas representation might offer best chances to gain new spatial solutions. Today’s most forward architects and designer are aware of this and make full use of physical and digital media during the process of design. During the summer term 2004 the experiment ‘Crossing the Media’ took place at the Technical University of Braunschweig. The main goal of this practical oriented seminar has been the exploration of the interface between analogue and digital Media within the design process. Both techniques, analogue and digital, were used in an experimental way and their interaction and adaptability in the field of architecture was analyzed. The work examines the possibility of a consistent integration of digital and physical representation in a design process and the individual benefits of each. In order to achieve this, we made up a stringent line of digital-analogue and analogue-digital (DA-AD) Technologies for our design experiment. During the examination we focused especially on the creative potential of the techniques used, their interaction and adaptability in the field of architecture. Hence one of the goals of the occupation with the digital analogue interfaces was the examination of the emerging shift within the structure during the process, the imprints of technology. This paper describes the workflow and tools that were used, our practical experiences with analogue digital interface and the emerging questions and impulses to architects future work and theory. The discovered limitations and consequences of interfaces between the analogue and digital realm of design and their creative chances will be revealed. We share results which we think are helpful to others, and we highlight areas where further research is necessary.
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
doi https://doi.org/10.52842/conf.acadia.2004.088
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id ddss2004_ra-247
id ddss2004_ra-247
authors Bi, G. and B. Medjdoub
year 2004
title Hybrid Approach to Solve Space Planning Problems in Building Services
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 247-261
summary In this paper an object-based CAD programming is used to take advantage of standardization to handle the schematic design, sizing, layout for services in a building ceiling void. From the specification of the building 3D model, our software proceeds through different steps; from the determination of the standard number and size of fan coils to the generation of 3D solutions. In order to deal with more complex geometry and larger problems, we have used a hybrid approach: Case Based Reasoning (CBR) within Constraint Satisfaction Problem (CSP) approaches. In practice, engineers in building services use previous solutions and adapt them to new problems. CBR mirrors this practical approach and does help us to deal with increasingly complex geometry effectively, and meanwhile CSP has been used for layout adaptation. The results have shown that it is possible to define and implement standard solutions to produce designs comparable with current practice. The benchmarking exercise has underlined many advantages and made some suggestions for further development. This project is funded by The Engineering and Physical Sciences Research Council (EPSRC) in UK.
keywords Case-Based Reasoning, Constraint Satisfaction Problem, Ceiling Voids Layout, Complex Geometry, Large Problem
series DDSS
last changed 2004/07/03 22:13

_id sigradi2004_407
id sigradi2004_407
authors Clarissa Ribeiro; Anja Pratschke
year 2004
title Transdisciplinaridade - complexidade - arquitetura [Transdisciplinarity - Complexity - Architecture]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper integrates the investigations developed by the authors at Nomads.USP, where we proposes amplify the understanding circa the possible interfaces between the complex thought and the contemporary design process of concrete, hybrid, symbiotic and virtual spaces, through the reading and critical analyses of complex thought principles, over the trandisciplinary methodology. The goal of this project stage is to study alternatives to the conventional design process in architecture, searching possible inter-relations, and complementation, among diverse disciplines, by a transdisciplinary approach of the design process, permeated by the new Information and Communication Technologies [ICT]. Starting from these parameters we search contemporary design processes . developed and applied at the most diverse disciplines . that, by some manner, dialogue with this thought. Inside this context, two processes, defining as Software Engineering Paradigms, deserve special attention: Spiral model and Chaos model.
keywords Complex thought; contemporary design process; transdisciplinarity; software engineering paradigms
series SIGRADI
email
last changed 2016/03/10 09:49

_id ijac20032103
id ijac20032103
authors de Vries, Bauke
year 2004
title A Nobel Prize for CAAD
source International Journal of Architectural Computing vol. 2 - no. 1
summary Fundamental questions about the status of CAAD research arise regularly on different levels and under different circumstances. Apparently there is no common understanding about this, causing confusion, which in itself is already bad for the status of CAAD research. In this article I will discuss the CAAD research approach as I find it at most architecture and engineering groups, by comparing it to research in the traditional science domain. Some differences can be explained from the nature of design, but others' have more historical reasons. To conclude I propose a long-term strategy for scientific CAAD research, namely: (i) Build your own community, (ii) Establish prestigious journals and prizes and (iii) Improve quality by natural selection. Eventually this will bring us the recognition for CAAD research that it deserves.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id sigradi2004_136
id sigradi2004_136
authors Etienne Delacroix
year 2004
title Studio of art and programming: Reaching out to art and architecture from inside engineering [Studio of art and programming: Reaching out to art and architecture from inside engineering]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary Combining aspects of engineering with traditions of studio art we investigate an interface between both worlds: using a substantial acumulation of electrodigital refuse, taken as a .raw expressive medium., an elective course ( TAP: .taller de arte y programacion. . Studio of art and programing. ) takes a large mixed group of students ( engineering, art, architecture, music, etc..) with very different levels of skills, for a sustained immersion into an exploration context. Eliminating in a large measure the problem of .costs. by using obsolete, discarded computer parts, students manipulate, observe, deconstruct, reconstruct functional hardware and use programming to produce an expressive documentation of the process. The objective is not to work on .products. but on the production of .symbolic value. by uncovering and staging the fundamentals of electro-digital-computational knowledge into a form of .theater of technology..
series SIGRADI
email
last changed 2016/03/10 09:51

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
doi https://doi.org/10.52842/conf.acadia.2008.072
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id ascaad2004_paper21
id ascaad2004_paper21
authors Garba, Shaibu B. and Mohammad A. Hassanain
year 2004
title A Review of Object Oriented CAD Potential for Building Information Modeling and Life Cycle Management
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary In many countries, the Architecture/Engineering/Consulting (AEC) industry is characterised by poor performance reflected in project delays and cost overruns. A contributor to the problem is the traditional approach to handling building information and its communication in life cycle management (LCM). Recent developments in Object Oriented Computer Aided Architectural Design (OO CAD) have provided the opportunity for improving building information modelling and its communication for more effective LCM. The aim of the paper is to review the potentials of OO CAD for building information modelling (BIM) and LCM. The paper reviews building information in the life cycle process, identifying the various actors and activities and the need for communication and information flow to support life cycle management. The paper also reviews the concept of OO CAD, highlighting its potential to improve building information and its flow and communication in life cycle management. The paper then goes on to review the potentials and limitations of OO CAD implementation in the AEC industry. The paper concludes by pointing out that the widespread adoption of OO CAD and the anticipated associated improvement in life cycle management will only be encouraged when the building industry is able to agree on a widely acceptable, interoperable standard for encoding building objects.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 408caadria2004
id 408caadria2004
authors Kuhn Park, Ramesh Krishnamurti
year 2004
title Flexible Design Representation for Construction
doi https://doi.org/10.52842/conf.caadria.2004.671
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 671-680
summary A high percentage of overall defects in the built environment occurs during the construction period. Some of these relate to design and the others relate to construction. The detection and reasoning of defects requires involvement of multiple expertise. Researchers in the School of Architecture, the Robotics Institute, and the Department of Civil and Environmental Engineering at Carnegie Mellon University are investing ways to integrate suites of emerging evaluation technologies to help find, record, manage, and limit the impact of construction defects. As part of this effort, the researchers have conducted case studies on construction sites near Pittsburgh, Pennsylvania. Each case study serves as a test-bed to measure the feasibility of our approach and to discover problems. In this paper, we discuss the overall project work flow in which we emphasize the importance of a flexible representation for construction, and describe our solution using a concept of representational flexibility named sorts.
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia04_100
id acadia04_100
authors Liapi, Katherine
year 2004
title A computer Based System for the Design and Fabrication of Tensegrity Structures
doi https://doi.org/10.52842/conf.acadia.2004.100
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 100-109
summary Tensegrity structures are composed of tension compression com­ponents, where the compression components (bars) are discontinu­ously enclosed within continuous tensile components (cables). From an engineering point of view, a tensegrity structure is characterized by geometric non-linearity and large displacements under loading. Therefore, its prestressed shape and deformation under loading are the result of the combined effect of the geometric parameters that determine the initial configuration of the structure, the level of pre­stress applied to cables, and the material properties of the compo­nent members of the structure. A method for generating the initial geometric configuration of tensegrity structures composed of tenseg­rity units and a parametric expression of this geometry have already been developed. A novel technology that makes possible the construction of tensegrity structures from the on-site assembly of deployable tensegrity units, which are fur­nished with a simple mechanism that permits bar-elongation, and, as a result, an increase of the prestress applied to the cables of each unit, is also under development. Also under development is a static analysis method that takes into account the above method for prestressing cables. This paper discusses the features of a system that supports the combined geometric and structural design of tensegrity structures, and integrates a graphical interface to display: a) models of initial geometry, b) geometry of the structure after prestress and loading are applied, and c) magnitude of forces applied to the structure’s component members (bars and cables). The system also provides numerical data to be used in component fabrication, and is therefore expected to become a very valuable tool for the design and construction of tensegrity structures.
series ACADIA
last changed 2022/06/07 07:59

_id 3ade
id 3ade
authors Martens, B. and Jabi, W. (Eds.)
year 2004
title SPECIAL ISSUE ON „DIGITAL MEDIA LIBRARIES“
source ITcon Vol. 9 (2004), pp. 97-174
summary There are numerous commercial digital asset management systems, but most of them are relatively expensive and meant for in-house management. In the meanwhile alternative solutions have been developed for searchable interactive repositories of media for professional use, education and research.

Web-based digital libraries and indexes of literature have been available on the internet for a few years now. In many cases a focus on specified areas is given and published information is disseminated in this way. However, researchers, educators and practitioners in architecture and civil engineering also depend on various sources of information that are stored and delivered in a multitude of media formats. Some of that information is case-based and built incrementally from previous experiences.

type normal paper
email
more http://www.itcon.org/cgi-bin/papers/Show?2004_6
last changed 2004/08/17 07:46

_id ddss2004_d-283
id ddss2004_d-283
authors Van Bronswijk, J.E.M.H., L.G.H. Koren, and C.E.E. Pernot
year 2004
title Adapting Epidemiological Methodologies to the Prediction of Health Effects of Built Environment Interventions
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 283-290
summary The influence of built environments on vitality and productivity of users is paramount. Since the introduction of Industrial, Flexible and Demountable Building, domotics, smart buildings, in general: mass-produced, intelligent and learning built environments, tailored built environments are within reach. This has resulted in the need for methodologies to predict short-term and long-term health effects of different built-environment constellations. Epidemiology has developed and validated methods to assess changes in prevalence of inflictions and other unhealthy conditions, as well as the number of healthy and vital years in a life span. After analysing the relationships among building (services) parts and its combinations, health determinants (exposures) and health outcomes, we could adapt the healthy years assessment (DALY) to changes in construction (insulation, air tightness) and building services engineering (ventilation, heating) for dwellings under Dutch conditions. The most important conclusion is that natural ventilation, mechanical ventilation and balanced ventilation not only differ in their average health effect, but even more so in the size of the ranges of these effects. Other systems, such as heat pumps or photo voltaic cells are expensive but will become economically applicable when healthcare costs are taken into account. These outcomes gave valuable clues for product innovation and opened the possibility to model health in relation to built environments. The method could also be applied to quality classification systems for dwellings.
keywords Health Prediction, Built Environment, Epidemiology, Modelling
series DDSS
last changed 2004/07/03 22:13

_id 301caadria2004
id 301caadria2004
authors Chia-Yu Wang, Teng-Wen Chang
year 2004
title Information Sharing for Small Design Studios - Ubiquitous Information Flow Approaches
doi https://doi.org/10.52842/conf.caadria.2004.391
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 391-404
summary While balancing the feasibility of management as well as design quality, design offices with strong focus on design are getting smaller and more compact. Mobility and dynamic information flow are two key issues for information sharing in design studio. In this research, we discussions about these concepts of ubiquitous computing, workflow and information model on small design studio. The goal of this research is trying to use available digital equipments as a ubiquitous device for sharing information dynamically no matter where and when they are. Use such digital equipments as well as server to store information and improve human interaction to achieve better interaction between human and technology. For these issues, we analyze three components of our system—the types of information, the interactive behaviors using roles as a metaphor, and ubiquitous devices that are available for small design studio. Within this research, we propose a system call Ubiquitous Information Flow Tool (UIFO) based on Java and Web technology for testing and reifying the concepts of ubiquitous information flow.
series CAADRIA
email
last changed 2022/06/07 07:55

_id 041222_ebnoether-i
id 041222_ebnoether-i
authors Ebnöther, If
year 2004
title SkinChair
source ETH postgraduate studies final thesis, Zurich
summary The skin chair project is an exploration of some of the possibilities that CNC technologies offer for designers and makers. At the center of attention is the fascination with the possibility of small-scale, on-demand production without the need for large investments in tooling. A lot of work has already been done in this field. The skin chair project aims to examine a few aspects using specific tools available at ETH Hönggerberg. The idea for the skin chair emerged from a commercial project where I learnt how difficult it can be to manufacture a threedimensional seating surface for a chair in steel. The constructional concept of the skin chair is simple: two ribs at either side of the chair define the shape, a skin (a thin material) is wrapped around these thus a hollow volume is created. The simple principle lends itself to parameterisation and thus the creation of many variants of the intial design. In an attempt to approximate a real-life product scenario, a number of components of the workflow were prototyped.
series thesis:MSc
last changed 2005/09/09 12:58

_id ijac20032107
id ijac20032107
authors Halin, Gilles; Hanser, Damien; Bignon, Jean-Claude
year 2004
title User Adaptive Visualization of Cooperative Architectural Design
source International Journal of Architectural Computing vol. 2 - no. 1
summary A cooperative design is a social activity inside a group. In this kind of activity, each actor plays a specific role. If each actor wants to realize the actions corresponding to his role, he needs some adaptive information about the cooperation context. The cooperation context of design project is a relational organization where each actor maintains specific relations with other people (designers, project managers, etc.) but also with documents and activities. Such a cooperation context exists in architectural cooperative design which is distinguished by a "mutual prescription" between actors. In architectural design we are in a network model of actors, instead of the hierarchical model that we can find in classical workflow tools. This organization has to be represented in the project management tool to give each user an adaptive vision of the project organization and evolution. The representation and the visualization of such a network, which characterizes each project, is the main objective of the "Relational Model of Cooperation" and the hypermedia view presented in this paper.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_594973 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002