CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 14 of 14

_id 2005_331
id 2005_331
authors Al-Douri, Firas A., Clayton, Mark J. and Abrams, Robin F.
year 2005
title The Impact of 3D Digital Modeling on the 3D Design Aspects in Urban Design Plans
doi https://doi.org/10.52842/conf.ecaade.2005.331
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 331-340
summary Some experts suggest that urban design plans in US cities may lack adequate coverage of the three-dimensional design aspects of the built environment. 3D digital models may help designers visualize and interact with design alternatives, large urban data sets, and 3D information more effectively, thus correcting this problem. Case studies of recent urban design plans that have used 3D digital models may indicate whether these technologies can increase the quality of the plan. This research discusses the role 3D urban models can play in supporting designers in addressing the 3D design aspects. A literature review focused on reviewing secondary sources to construct or adopt theoretical propositions against which the empirical data can be compared and contrasted. A case study involved investigating the methods with which 3D models have been used in developing a selected urban design plan. The content analysis of the case study refuted the premise that the plan would inadequately address 3D aspects and utilize 3D information, and indicated an effective usage of 3D modeling to analyze and represent most of the 3D and 2D information elements and issues. The results are consistent with a hypothesis that the effective usage of 3D modeling would result in the effective coverage of 3D information and issues. The effective usage of the model’s functionalities has improved the quality of the decision-making process through improving designers’ cognitive capabilities and providing a platform for communicating design ideas among and across design teams.
keywords 3D Modeling; Urban Design Plans; Digital Models; 3D Design Aspects
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2006_443
id caadria2006_443
authors M.W. KNIGHT, A.G.P. BROWN, J.S. SMITH
year 2006
title DIGITAL TERRAIN MESHES FROM GPS IN URBAN AREAS: A Practical Aid to City Modelling
doi https://doi.org/10.52842/conf.caadria.2006.x.a6t
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 443-451
summary The work presented here brings together two core interests that have been developed by the first two authors over recent years. The first is the development of city models for use in a range of applications where different data sets and different levels of detail may be appropriate. The second is the development of low cost systems that can deliver useful tools to help address Computer Aided Architectural Design problems. In addition the involvement of a colleague in Electrical Engineering and Electronics reflects a long standing belief in the benefits of cross-disciplinary and interdisciplinary work between architecture and parallel research fields. The product of the collaboration is a system that can aid in the production of terrain models that, in our case, are particularly important as the base for a city model (Brown et.al, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2005_a_7c_f
id caadria2005_a_7c_f
authors M.N.H. Siddique, Qazi A. Mowla, Mohammad A. Al Masum
year 2005
title VIRTUALITY IN ARCHITECTURE: A DESIGN METAPHOR
doi https://doi.org/10.52842/conf.caadria.2005.342
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 1, pp. 342-350
summary Traditionally, architecture in its design process employs physical matter, requires physical presence and relies on real world environment using conventional methods of 2D depictions such as paper and pen or 3D representations such as physical models and communicates design ideas in verbal or text-based form. The conventional design process, for example an interior design, a residential house, a commercial complex or even urban design projects, follows the same hierarchy of activities. Efforts are made to the satisfaction of both parties to give the ideas of a physical shape through sketches, drafts and models which may take weeks even months. Finally the project gets its final shape in a working drawing, 3D visualisation or model making. This process is time consuming and somewhat redundant. In recent years technology has offered architects a new tool - the virtual environment. Architects use virtual environment increasingly as device of communication and presentation of design intensions. Virtual environment enables users to interact in real-time with design but unfortunately have not been used widely in the process of design development. The aim of this paper is to investigates the relationship between present design process and the emerging technology of virtual reality, establish a relationship between the two and its influence on architecture to form a new translated design process and communication, an interface between architect and client.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:59

_id caadria2005_b_4b_d
id caadria2005_b_4b_d
authors Martin Tamke
year 2005
title Baking Light: Global Illumination in VR Environments as architectural design tool
doi https://doi.org/10.52842/conf.caadria.2005.214
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 214-228
summary As proven in the past, immersive Virtual Environments can be helpful in the process of architectural design (Achten et al. 1999). But still years later, these systems are not common in the architectural design process, neither in architectural education nor in professional work. The reasons might be the high price of e.g. CAVEs, the lack of intuitive navigation and design tools in those environments, the absence of useful and easy to handle design workflows, and the quality constraints of real-time display of 3D models. A great potential for VR in the architectural workflow is the review of design decisions: Display quality, comfortable navigation and realistic illumination are crucial ingredients here. Light is one of the principal elements in architectural design, so design reviews must enable the architect to judge the quality of his design in this respect. Realistic light simulations, e.g. via radiosity algorithms, are no longer the domain of high-end graphic workstations. Today's off-the-shelf hardware and 3D-software provide the architect with high-quality tools to simulate physically correct light distributions. But the quality and impression of light is hard to judge from looking at still renderings. In collaboration with the Institute of Computer Graphics at our university we have established a series of regular design reviews in their immersive virtual environment. This paper describes the workflow that has emerged from this collaboration, the tools that were developed and used, and our practical experiences with global-light-simulations. We share results which we think are helpful to others, and we highlight areas where further research is necessary.
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_114p
id acadia20_114p
authors Zivkovic, Sasa; Havener, Brian; Battaglia, Christopher
year 2020
title Log Knot
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 114-119.
summary Log Knot, developed by the Robotic Construction Laboratory (RCL) at Cornell University, is a robotically fabricated architectural installation that establishes a method for variable compound timber curvature creation utilizing both regular and irregular roundwood geometries. Moreover, the project develops methods for minimal formwork assembly and moment force optimization of customized mortise and tenon joints. Following the logic of a figure-8 knot, the project consists of an infinite loop of roundwood, curving three-dimensionally along its length. There are a variety of techniques to generate single curvature in wood structures – such as steam bending (Wright et al., 2013) or glue lamination (Issa and Kmeid, 2005) – but only a few techniques to generate complex curvature from raw material within a single wooden structural element exist. To construct complex curvature, the research team developed a simple method that can easily be replicated. First, the log is compartmentalized, establishing a series of discrete parts. Second, the parts are reconfigured into a complex curvature “whole” by carefully manipulating the assembly angles and joints between the logs. Timber components reconfigured in such a manner can either follow planar curvature profiles or spatial compound curvature profiles. Based on knowledge gained from the initial joinery tests, the research team developed a custom tri-fold mortise and tenon joint, which is self-supportive during assembly and able to resist bending in multiple directions. Using the tri-fold mortise and tenon joint, a number of full-scale prototypes were created to test the structural capacity of the overall assembly. Various structural optimization protocols are deployed in the Log Knot project. While the global knot form is derived from spatial considerations – albeit within the structurally sound framework of a closed-loop knot structure – the project is structurally optimized at a local level, closely calibrating structural cross-sections, joinery details, and joint rotation in relation to prevailing load conditions.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ascaad2006_paper29
id ascaad2006_paper29
authors Bennadji, A. and A. Bellakha
year 2006
title Evaluation of a Higher Education Self-learning Interface
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This paper is a follow-up to a previous paper published in ASCAAD 2004 (A. Bennadji et al 2005). The latter reported on CASD (Computer Aided Sustainable Design) a self-learning educational interface which assists the various building’s actors in their design with a particular attention to the aspect of energy saving. This paper focuses on the importance of software evaluation and how the testing is done to achieve a better human-machine interaction. The paper will go through the summative evaluation of CASD, presents the output of this evaluation and addresses the challenge facing software developers: how to make an interface accessible to all users and specifically students in higher education.
series ASCAAD
email
last changed 2007/04/08 19:47

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2006_597
id caadria2006_597
authors CHOR-KHENG LIM, CHING-SHUN TANG, WEI-YEN HSAO, JUNE-HAO HOU, YU-TUNG LIU
year 2006
title NEW MEDIA IN DIGITAL DESIGN PROCESS: Towards a standardize procedure of CAD/CAM fabrication
doi https://doi.org/10.52842/conf.caadria.2006.x.r4i
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 597-599
summary In 1990, due to the traditional architecture design and construction method difficult to build the complicated and non-geometry free-form Fish Structure in Barcelona, architect Frank Gehry started learn from the field of aerospace to utilize CAD/CAM technology in design and manufacture process. He created the free-form fish model in CAD system and exported the digital CAD model data to CAM machine (RP and CNC) to fabricate the design components, and finally assembled on the site. Gehry pioneered in the new digital design process in using CAD/CAM technology or so-called digital fabrication. It becomes an important issue recently as the CAD/CAM technology progressively act as the new digital design media in architectural design and construction process (Ryder et al., 2002; Kolarevic, 2003). Furthermore, in the field of architecture professional, some commercial computer systems had been developed on purpose of standardizes the digital design process in using CAD/CAM fabrication such as Gehry Technologies formed by Gehry Partners; SmartGeometry Group in Europe and Objectile proposed by Bernard Cache. Researchers in the research field like Mark Burry, Larry Sass, Branko Kolarevic, Schodek and others are enthusiastic about the exploration of the role of CAD/CAM fabrication as new design media in design process (Burry, 2002; Schodek et al., 2005; Lee, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2006_605
id caadria2006_605
authors RICHARD DANK, ANDREAS GRUBER
year 2006
title RYUGYONG.ORG: Other Levels to the Ryugyong Hotel: An idea on architecture and geopolitics
doi https://doi.org/10.52842/conf.caadria.2006.x.d2g
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 605-607
summary The prestigious international monthly architecture periodical Domus opens its June 2005 issue with the lines: "A ruin of the future? The 330-metre-tall skeleton of an unfinished hotel towers like a concrete pyramid over North Korea's capital, Pyongyang." The magazine's call "to transform the Ryugyong Hotel into a worldwide antenna for ideas" (Boeri et al. 2005, cover) was a pronunciamento we could not resist.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2005_a_7b_c
id caadria2005_a_7b_c
authors Chang, Chuang-Ting
year 2005
title Some Phenomena of Touch in Study Models
doi https://doi.org/10.52842/conf.caadria.2005.277
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 1, pp. 277-287
summary The senses of “Touch” bring people the feeling of reality, and human beings can always naturally sense the tactile impression. Hence we touch things and our sense tells us that our hands are touching something (Hinckley et al. 1999). Comparing to the tools used by designers between traditional and new digital media in the design process, the most difference is in the sense of touch. This paper focuses on the sense of touch to point out the haptic experience which have ignored by the past in design process. Four phenomena will be discussed in details and some useful suggestions given for future study.
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2005_b_4a_b
id caadria2005_b_4a_b
authors Ruchi Choudhary, Jeremy Michalek
year 2005
title Design Optimization in Computer-Aided Architectural Design
doi https://doi.org/10.52842/conf.caadria.2005.149
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 149-159
summary The proposition of using design optimization to formalize and add rigor to the decision-making process in building and construction was earlier compiled by Radford et al. in 1988, providing an in-depth demonstration of techniques available at the time. Much has changed since, both in the available solution methods and the nature of the problems themselves. This paper provides an updated insight into past and current trends of using this engineering design paradigm to solve architectural design problems, with an emphasis on continuous nonlinear formulations of simulation-based problems. The paper demonstrates different problem formulations and current techniques for solving them. Examples from recent research are used to demonstrate significant achievements and existing challenges associated with formalizing and solving decision-making tasks in architecture.
series CAADRIA
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_207428 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002