CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id ijac20053403
id ijac20053403
authors Datta, Sambit; Beynon, David
year 2005
title A Computational Approach to the Reconstruction of Surface Geometry from Early Temple Superstructures
source International Journal of Architectural Computing vol. 3 - no. 4, 471-486
summary Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id 2005_483
id 2005_483
authors Datta, Sambit
year 2005
title The Generation of Superstructure Geometry in Latina Temples: A Hybrid Approach
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 483-488
doi https://doi.org/10.52842/conf.ecaade.2005.483
summary The Nâgara tradition of temple building created a rich corpus of Latina (single-spired) temples spread across Northern India between the fifth and thirteenth centuries. Computing methods offer a distinct methodology for reconstructing the genesis and evolution of geometry in this tradition over time. This paper reports a hybrid technique, comprising three distinct computations for recovering and explaining the geometry of temples. The application of the technique enables scholars to bring together fragments of evidence, construe “best-fit” strategies and unearth implicit or hidden relationships. The advantage of this approach is that changes in assumptions and testing of geometric alternatives can be easily simulated from multiple sources of information, such as texts, sacred diagrams and individual temples.
keywords Generative Design: 2D Representation; 3D Modeling; Visualization; Constraint Based Design
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2005_b_4c_d
id caadria2005_b_4c_d
authors Sambit Datta
year 2005
title On Recovering the Surface Geometry of Temple Superstructures
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 253-258
doi https://doi.org/10.52842/conf.caadria.2005.253
summary The application of computational techniques to the analysis of heritage artifacts enables scholars to bring together diverse fragments of surviving evidence, construe “best-fit” strategies and unearth implicit or hidden relationships. This paper reports a hybrid approach for recovering the surface geometry of temples. The approach combines physical measurements, architectural photogrammetry and generative rules to create a parametric model of the surface. The computing of surface geometry is broken into three parts, a global model governing the overall form of the superstructure, local models governing the geometry of individual motifs and finally the global and local models are combined into a single geometry. In this paper, the technique for recovering surface geometry is applied to a tenth century stone superstructure: the temple of Ranakdevi at Wadhwan in Western India. The global model of the superstructure and the local model of one individual motif are presented.
series CAADRIA
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_403403 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002