CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 21

_id acadia06_544
id acadia06_544
authors Schindler, C., Braach, M., Scheurer, F.
year 2006
title Inventioneering Architecture: building a doubly curved section through Switzerland
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 544-545
doi https://doi.org/10.52842/conf.acadia.2006.544
summary Inventioneering Architecture is an exhibition of the four Swiss architecture schools that has been traveling the world during 2005/06. This doubly curved exhibition platform, resembling an abstract crosscut through Swiss topography, measures 40 by 3 meters. The authors proposed to assemble the hilly platform from 1000 individually curved rafters that were milled out of 40mm medium density fiberboard (MDF). By implementing a continuous digital chain from the definition of the surface geometry in the CAD software Maya to the control of the five-axis CNC-mill that manufactures the parts, production costs could be lowered significantly. The detailing was developed closely after the capabilities of a five-axis router. The platform is divided into 40 mm wide cross sections, each describing the upper surface path of one rafter. The milling tool follows this path and rotates around it at the same time, cutting out a so called “ruled surface” that follows the topography of the platform both along and across the section. In order to meet the budget requirements, the crucial point was to automate the translation of the platform geometry into the geometry of the single parts and finally into the steering code (G-Code) for the computer controlled mill.
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_184
id ecaade2017_184
authors Almeida, Daniel and Sousa, José Pedro
year 2017
title Tradition and Innovation in Digital Architecture - Reviewing the Serpentine Gallery Pavilion 2005
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 267-276
doi https://doi.org/10.52842/conf.ecaade.2017.1.267
summary Please write your aToday, in a moment when digital technologies are taking command of many architectural design and construction processes, it is important to examine the place and role of traditional ones. Designed by Álvaro Siza and Eduardo Souto de Moura in collaboration with Cecil Balmond, the Serpentine Gallery Pavilion 2005 reflects the potential of combining those two different approaches in the production of innovative buildings. For inquiring this argument, this paper investigates the development of this project from its conception to construction with a double goal: to uncover the relationship between analogical and digital processes, and to understand the architects' role in a geographically distributed workflow, which involved the use of computational design and robotic fabrication technologies. To support this examination, the authors designed and fabricated a 1:3 scale prototype of part of the Pavilion, which also served to check and reflect on the technological evolution since then, which is setting different conditions for design development and collaboration.bstract here by clicking this paragraph.
keywords Serpentine Gallery Pavilion; Computational Design; Digital Fabrication; Wooden Construction; Architectural Representation;
series eCAADe
email
last changed 2022/06/07 07:54

_id 2005_647
id 2005_647
authors Caldas, Luisa G.
year 2005
title Three-Dimensional Shape Generation of Low-Energy Architectural Solutions using Pareto Genetic Algorithms
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 647-654
doi https://doi.org/10.52842/conf.ecaade.2005.647
summary This paper extends on a previous work on the application of a Generative Design System [GDS] to the evolution, in a computational environment, of three-dimensional architectural solutions that are energy-efficient and adapted to the climatic environment where they are located. The GDS combines a well-known building energy simulation software [DOE2.1E] with search procedures based on Genetic Algorithms and on Pareto optimization techniques, successfully allowing to tackle complex multi-objective problems. In the experiments described, architectural solutions based on a simplified layout were generated in response to two often-conflicting requirements: improving the use of daylighting in the space, while controlling the amount of energy loss through the building fabric. The choice of a cold climate like Chicago provided an adequate framework for studying the role of these opposing forces in architectural form generation. Analysis of results shows that building characteristics that originate successful solutions extend further than the building envelope. Issues of massing, aspect ratio, surface-to-volume ratio, orientation, and others, emerge from the analysis of solutions generated by the GDS, playing a significant role in dictating whether a given architectural form will prove adapted to its climatic and energy requirements. Results suggest that the questions raised by the exploration of form generation driven by environmental concerns are complex, deserving the pursuit of further experiments, in order to better understand the interaction of variables that the evolutionary process congregates.
keywords Generative Design System, Genetic Algorithms, Evolutionary Architecture, Artificial Intelligence in Design, Building Energy Simulation, Bioclimatic Architecture, Environmental Design.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2005_300
id sigradi2005_300
authors Cavieres, Andrés P.; Marcelo Quezada G.
year 2005
title Analysis of the possibilities offered by the application of parametric modeling technologies in the design processes shared between architects and industrial designers: The prefabricated house case.
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 300-303
summary Traditionally, the teaching of digital design systems has been focused on the operative learning of software. However, this almost exclusively technical approach has leaded to a partial view of these systems, as well suited platforms to exploration of project’s possibilities. Consequently their relevance as a base for project representation and therefore as a useful instrument for conceptual exploration for design and experimental research of their processes have been undervalued. On the other hand, this restrictive perspective results in an important waste of the teaching possibilities lying in CAD software related with interdisciplinary teamwork. The following academic experience obeys to a new insight of how to teach these tools, based upon problem solving in Design by interdisciplinary students work teams from Architecture and Industrial Design. In this bet, the learning process is flexible, shared and collaborative, according to the requirements of each project, powered by the commitment of facing common goals. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 09:48

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaadesigradi2019_027
id ecaadesigradi2019_027
authors Erzetic, Catherine, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Enhancing User-Engagement in the Design Process through Augmented Reality Applications
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-432
doi https://doi.org/10.52842/conf.ecaade.2019.2.423
summary Augmented Reality (AR) technologies are often perceived as the most impactful method to enhance the communication between the designer and the client during the iterative design process. However, the significance of designing the User Interface (UI) and the User Experience (UX) are often underestimated. To intercede, this research aims to employ new and existing techniques to develop UI's, and comparatively assess "the accuracy and completeness with which specified users can achieve specified goals in particular environments" (Stone, 2005) - a notion this research delineates as 'effectiveness'. Prompted by the work of key scholars, the developed UI's were assessed through the lens of existing UI evaluation techniques, including: Usability Heuristics (Nielsen, 1994) and Visual and Cognitive Heuristics (Zuk and Carpendale, 2006). In partnership with PTW Architects, characteristics such as the rapidity and complexity of interactions, in conjunction with the interface's simplicity and intuitiveness, were extracted from 15 trials underwent by architectural practitioners. The outcomes of this research highlights strategies for the effective development of user interface design for mobile augmented reality applications.
keywords User Interface; Human Centered Design; User Experience; Heuristics; Usability Inspection Method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaade2024_230
id ecaade2024_230
authors Fekar, Hugo; Novák, Jan; Míèa, Jakub; Žigmundová, Viktória; Suleimanova, Diana; Tsikoliya, Shota; Vasko, Imrich
year 2024
title Fabrication with Residual Wood through Scanning Optimization and Robotic Milling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 25–34
doi https://doi.org/10.52842/conf.ecaade.2024.1.025
summary The project deals with the use of residual wood of tree stumps and roots through scanning, optimization and robotic milling. Wood logging residue makes up to 50 percent of the trees harvested biomass. (Hakkila and Parikka 2002). Among prevailing strategies is leaving residue on site, and recovering residue for bioenergy. (Perlack and others 2005). The project explores the third strategy, using parts of the logging residue for fabrication, which may reduce the overall amount of wood logging volume. Furthermore approach aims for applying residue in its natural form and taking advantage of specific local characteristics of wood (Desch and Dinwoodie 1996). The project applies the strategy on working with stump and roots of an oak tree. Due to considerations of scale, available milling technics and available resources, chosen goal of the approach is to create a functioning chair prototype. Among the problems of the approach is the complex shape of the residue, uneven quality of wood, varying humidity and contamination with soil. After cleaning and drying, the stump is scanned and a 3D model is created. The 3D model od a stump is confronted with a 3D modelled limits of the goal typology (height, width, length, sitting surface area and overal volume of a chair) and topological optimization algorithm is used to iteratively reach the desired geometry. Unlike in established topological optimization proces, which aims for a minimal volume, the project attempts to achieve required qualities with removing minimal amount of wood. Due to geometric complexity of both stump and goal object, milling with an 6axis industrial robotic arm and a rotary table was chosen as a fabrication method. The object was clamped to the board (then connected to a rotary table) in order to provide precise location and orientation in 3D space. The milling of the object was divided in two parts, with the seating area milled in higher detail. Overall process of working with a residual wood that has potential to be both effective and present aesthetic quality based on individual characteristics of wood. Further development can integrate a generative tool which would streamline the design and fabrication proces further.
keywords Robotic arm milling, Scanning, Residual wood
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia05_184
id acadia05_184
authors Fineout, Matthew G.
year 2005
title The Tower of Babel: Bridging Diverse Languages with Information Technologies
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 184-191
doi https://doi.org/10.52842/conf.acadia.2005.184
summary New digital tools or information technologies are providing the means for architects to realize unprecedented architectural creations. Unfortunately, the promise these technologies hold is far from their potential expression in the built physical environment. A contributing cause to this disjunctive state is the multiplicity of languages and knowledge sets employed by the various team members or actors engaged in a building project. From the cost models of the owners to the shop drawings of the fabricators, each actor views the project in terms specific to their individual discipline. In order to successfully engage the building process, these new technologies must account for this condition and develop means in which to span across traditional boundaries. This paper will examine the disjointed and fractured nature of the building project and identify opportunities for the deployment of information technologies to bridge boundaries, ultimately providing for and delivering architectural projects of unparalleled precedence. Specific aspects inherent to these technologies will be examined to understand where their application may benefit the building process. The key attributes this paper will focus on include: visualization tools, centralized database, cross discipline platform tools and novel forms of information representation. A case study of an architectural project will serve as the means in which to study the successful implementation of these attributes and their resulting impact on the design process and building project. This study will demonstrate how information technologies can be implemented within the multifaceted framework of conventional building projects to yield a project of unprecedented form.
series ACADIA
email
last changed 2022/06/07 07:50

_id sigradi2005_799
id sigradi2005_799
authors Gonzalo, Guillermo E.; Sara L. Ledesma, V.M. Nota, C.F. Martínez, G.I. Quiñones y G. Márquez Vega.
year 2005
title Methodology for the bioclimatic design: computer sustain for election of guidelines and strategies.
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 799-805
summary After numerous studies and practical of use, field and laboratory measurements, carried out among the years 1994 and 1999, we arrived to the elaboration and presentation of a methodology for the bioclimatic design and energetically sustainable that already takes two books publications. With the support of more than 600 figures that facilitate the understanding of the concepts explained in the books and 26 computer software and databases, that are attached to the second book, the work is facilitated so that designers of buildings that have not been never in contact with a certain climate, or that they don’t have sufficiently assumed by means of the observation of the particularities of a certain climatic situation, to understand the form in that the climate influence their design, condition or determine the design solutions and averge strategies that will choose when carrying out an architecture work. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 09:52

_id b3f6
authors Goodwin, G.
year 1997
title Software and hardware summary
source Automation in Construction 6 (1) (1997) pp. 29-31
summary With the rate of change accelerating in both technological development and in the spread of global markets, very few cost cutting businesses will survive in a value added marketplace. Information sharing over networks has a lot to offer the Industry by way of eliminating delays from the construction process and inventory from the Supply Chain. The most significant change by 2005 will be in networking and communications. Discovering design flaws at the design stage rather than when the building is in use must be very attractive to clients of the Construction Industry. Construction firms must have some sort of IT Strategy or clear view of how to exploit IT to support their businesses. Large companies need to act as coaches and mentors to smaller ones. The Industry cannot maximise its IT benefits unless all the players participate.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 1fbd
authors Kelly, J.G., Aouad, G., Rezgui, Y.and Crofts, J.
year 1997
title Information systems developments in the UK construction industry
source Automation in Construction 6 (1) (1997) pp. 17-22
summary The paper is based on a synopsis of work completed in 1995 as part of the 'Building IT 2005' project in the UK (J.G. Kelly, Procurement information systems, Building IT 2005, Construction IT Forum, Cambridge, 1995). Selected current UK research is reported and a revised view of the future is offered on the basis of this new work.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id caadria2005_a_1b_d
id caadria2005_a_1b_d
authors M. Bouattour, G.Halin, Jc. Bignon, P. Triboulot
year 2005
title A cooperative model using semantic works dedicated to architectural design
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 1, pp. 94-104
doi https://doi.org/10.52842/conf.caadria.2005.094
summary Architectural cooperative design as well as information modeling have been active research areas for several decades. The use of systems adapted to the cooperative design assistance for the building domain is complex. This results from the complexity of the cooperative work (difficulties in tracking actor’s work, lack of most of the required information, coordination problems, implicit nature of most of the construction activities, etc.) The main objective of our research in these domains is to develop a tool that helps the management of a building project and aids cooperative design. So, in the first part of this article, we propose to view the exchanging data mode and cooperation tools in the building domain. The second part of this article illustrates the existing cooperative design models. Then we justify the interest shown in a new model of cooperative design where the relational organization of the project and the semantic meaning of works are taken into account. Finally, we use this new model for defining a design-aided tool, to deduce advantages and limits of the “Virtual Cooperative Project”.
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2006_443
id caadria2006_443
authors M.W. KNIGHT, A.G.P. BROWN, J.S. SMITH
year 2006
title DIGITAL TERRAIN MESHES FROM GPS IN URBAN AREAS: A Practical Aid to City Modelling
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 443-451
doi https://doi.org/10.52842/conf.caadria.2006.x.a6t
summary The work presented here brings together two core interests that have been developed by the first two authors over recent years. The first is the development of city models for use in a range of applications where different data sets and different levels of detail may be appropriate. The second is the development of low cost systems that can deliver useful tools to help address Computer Aided Architectural Design problems. In addition the involvement of a colleague in Electrical Engineering and Electronics reflects a long standing belief in the benefits of cross-disciplinary and interdisciplinary work between architecture and parallel research fields. The product of the collaboration is a system that can aid in the production of terrain models that, in our case, are particularly important as the base for a city model (Brown et.al, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2005_b_4b_d
id caadria2005_b_4b_d
authors Martin Tamke
year 2005
title Baking Light: Global Illumination in VR Environments as architectural design tool
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 214-228
doi https://doi.org/10.52842/conf.caadria.2005.214
summary As proven in the past, immersive Virtual Environments can be helpful in the process of architectural design (Achten et al. 1999). But still years later, these systems are not common in the architectural design process, neither in architectural education nor in professional work. The reasons might be the high price of e.g. CAVEs, the lack of intuitive navigation and design tools in those environments, the absence of useful and easy to handle design workflows, and the quality constraints of real-time display of 3D models. A great potential for VR in the architectural workflow is the review of design decisions: Display quality, comfortable navigation and realistic illumination are crucial ingredients here. Light is one of the principal elements in architectural design, so design reviews must enable the architect to judge the quality of his design in this respect. Realistic light simulations, e.g. via radiosity algorithms, are no longer the domain of high-end graphic workstations. Today's off-the-shelf hardware and 3D-software provide the architect with high-quality tools to simulate physically correct light distributions. But the quality and impression of light is hard to judge from looking at still renderings. In collaboration with the Institute of Computer Graphics at our university we have established a series of regular design reviews in their immersive virtual environment. This paper describes the workflow that has emerged from this collaboration, the tools that were developed and used, and our practical experiences with global-light-simulations. We share results which we think are helpful to others, and we highlight areas where further research is necessary.
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2005_609
id sigradi2005_609
authors Mettig Rocha, Heliana F.; Gilberto Corso Pereira
year 2005
title Representation of the urban space in time
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 609-614
summary This study is part of a research project that investigates forms of visualization and representation of the urban space. The focus is to represent part of the city of Salvador – the port area – that permits the understanding of what this area is today and what it was in the past. Therefore, the problem is to represent an urban area in different times. It will be used several instruments and media to build this representation, which will have as a standard support the interpretation of historic iconography. Besides it will also need other devices as the actual digital cartography available, historic maps, e.g. The final objective is to integrate the new models within a three-dimensional model of the city of Salvador, built in a previous project and through an interactive application that will permit the user navigates in the urban space within time. [Full paper in Portuguese]
series SIGRADI
email
last changed 2016/03/10 09:55

_id d2a9
id d2a9
authors PAPADIMITRIOU Kimon, KOUZELEAS Stelios
year 2005
title A METHOD FOR REAL TIME SPATIAL ANALYSIS OF SOUND VIA MODELING IN A CAD ENVIRONMENT, BASED ON ACOUSTICAL MEASUREMENTS
source 14th European Colloquium on Theoretical and Quantitative Geography,September 9-13, 2005, Tomar, Portugal
summary Typical modeling systems for spatial analysis employ data that represent the visual part of a landscape (e.g. relief and morphology), combined with other data about specific attributes (depending on the aims of an application). Thus, in a modeling environment, each place is described by a variety of properties that are not always visible. More of those “hidden” properties require special sensors and/or instruments to be captured and sometimes make their presence evident through human senses, such is sound. The present study takes advantage of wide spread technologies (such as GPS, VHF telecommunications and field sensors) and methodologies that are commonly used in telegeoprocessing – telegeomonitoring in order to simulate an existing acoustic environment. The aim is to acquire real time data about the sound (referenced to a particular area) and manipulate them in a CAD environment with purpose to visualize the sound influence in a specific landscape. Specifically it is proposed a method that transfers spatial data (collected from the field), directly into a modeling system (in the office, or in situ). In sequence the data is processed adequately to feed the modeling system that describes the current sound intensity of a place.
keywords Environmental Simulation, Soundscape, Real-time data acquisition, Real-time 3D modeling
series other
type normal paper
email
more http://e-geo.fcsh.unl.pt/ectqg2005/
last changed 2005/10/25 11:10

_id 2005_349
id 2005_349
authors Rafi, Ahmad, Izani, Mohd and Tinauli Musstanser
year 2005
title High Dynamic Range Image (HDRI) Rendering
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 349-356
doi https://doi.org/10.52842/conf.ecaade.2005.349
summary This paper suggests a method known as High Dynamic Range Image (HDRI) to pre-visualise architectural elements in three-dimensional (3D) environment used by Computer Graphic Imaging (CGI) film-makers to integrate 3D models and characters into live action background (special effect). This Intensification Research Priority Area (IRPA) grant project was developed to suggest ways to achieve effective rendering solution and composition of the final output. It will focus on experimental modelling of local cultural elements that provides solutions for radiosity-type effects and dirt shadings. A set of data from an established site (i.e. environment) was captured and represented in High Dynamic Range (HDR) file. This data is integrated with architectural elements (e.g. 3D objects) and then pre-rendered to get the 3D visualisation of the actual environment. Several different exposures were also captured and tested to establish the correct rendering and lighting condition. This earlier result shows that HDRI method provides accurate visualisation and drastically reduces the rendering time without compromising the data (images) with accurate lighting. This paper will demonstrate the process of HDRI, compare the visual impact with ‘radiosity’ technique and other related rendering solutions and present the results, which are useful for architectural animation, simulation and other modelling developments.
keywords HDRI, Pre-Visualisation, Modelling, Rendering
series eCAADe
email
last changed 2022/06/07 07:59

_id cf2005_1_84_44
id cf2005_1_84_44
authors ROSENMAN M.A., SMITH G., DING L., MARCHANT D. and MAHER M.L.
year 2005
title Multidisciplinary Design in Virtual Worlds
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 433-442
summary Large design projects, such as those in the AEC domain, involve collaboration among a number of design disciplines, often in separate locations. With the increase in CAD usage in design offices, there has been an increase in the interest in collaboration using the electronic medium, both synchronously and asynchronously. The use of a single shared database representing a single model of a building has been widely put forward but this paper argues that this does not take into account the different representations required by each discipline. This paper puts forward an environment which provides real-time multi-user collaboration in a 3D virtual world for designers in different locations. Agent technology is used to manage the different views, creation and modifications of objects in the 3D virtual world and the necessary relationships with the database(s) belonging to each discipline.
keywords collaboration, multiviews, virtual worlds, agents
series CAAD Futures
email
last changed 2006/11/07 07:27

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_482599 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002