CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 559

_id sigradi2005_000
id sigradi2005_000
authors Angulo, Antonieta and Vásquez de Velasco, Guillermo (eds.)
year 2005
title SiGradi2005: Vision and Visualization
source Proceedings of the 9th Iberoamerican Congress of Digital Graphics Graphics / ISBN 978-1-59975-306-5] Lima (Perú) 21-23 november 2005, 826 p.
summary Paradoxically, one of the most difficult but enjoyable things we do is to imagine. To open the eyes of our mind and see what no one else can see. We see images of things that are yet to be and through the same skill we devise ways in which to make them happen. We design the future in the form of environments, graphics, products, films, and a growing range of new media. Our ability to develop a vision and to visualize it is a gift that we are called to cultivate and put to good use. We have been privileged with a great responsibility. In the process of developing a vision and communicating that vision to others, we “visualize”. Visualization can be a very private experience in which we are alone with mental images that help us shape our vision. In other instances visualization can be a component of mass communication. Visualization can be a means or can be an end. It can be a small architectural sketch on a paper napkin or a mega-graphic covering a high-rise building, an airplane or a ship. In every case, the relationship between vision and visualization is a mutually supportive articulation of what our eyes and our minds can see. Our vision of the role of computers in the art and science of visualization is in constant development. Computer visualization can support an intimate dialog between a designer and his/her vision. It can translate and communicate that vision to a larger audience and in the hands of a new-media artist it can actually constitute his/her vision. The 9th Annual Conference of SIGraDI (Ibero American Society for Computer Graphics) will explore our collective vision on the future of digital visualization and digital media in Environmental Design, Product Design, Graphic Design, Cinematography, New Media, and Art. Authors are invited to share their research work with a focus on how it contributes to shape a collective understanding of the past, awareness of the present, and vision of the future in our multiple disciplines.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ad19
id ad19
authors Calderon, C., and Noble, R
year 2005
title BEYOND MODELLING: AVANT-GARDE COMPUTER TECHNIQUES IN RESIDENTIAL BUILDINGS.
source I Jornadas de Investigacion en Construccion, Madrid, 2-4 June, 2005.
summary If the result of computer innovations can be interpreted as an emerging “difference” in the quality of constructed space, then in order to truly understand what future applications may be regarding architecture at present, we should look at what advanced functions are available in the process of designing forms and space (DeLuca and Nardini, 2002). Recently the so called parametric approach, a technique for describing a large class of designs with a small description in programming code, has become a focus of attention in architectural computing. In this paper, we reflect on the current use of parametric tools using real case studies as well as our own proof of concept parametric programmes and report on how the avant-garde computer techniques may help to increase the quality of residential building.
keywords Building Quality, Parametric Design
series other
type normal paper
email
last changed 2005/12/02 11:42

_id ijac20053104
id ijac20053104
authors Fischer, Thomas
year 2005
title Teaching Programming for and with Microcontroller-Enhanced Physical Models
source International Journal of Architectural Computing vol. 3 - no. 1, 57-74
summary As processes of use, interaction and transformation take center stage in various fields of design, electronic sensors, controllers, displays and actuators can significantly enhance the value of physical models. These technologies allow the development of novel computer interfaces for new kinds of interaction with virtual models, and in the future they can be expected to play an important role in the development of new types of active building components and materials for automated construction and dynamic runtime adaptations of inhabitable environments. However, embedding programmed logic into physical objects involves skills outside the traditional domains of expertise of designers and model makers and confronts them with a steep learning curve. The wide variety of alternative technologies and development tools available in this area has a particularly disorienting effect on novices. However, some early experiences suggest that mastery of this learning curve is easily within reach, given some basic introduction, guidance and support. To assist design students in acquiring a basic level of programming knowledge, better educational programming tools are still required. It is the intent of this paper to provide designers and educators with a starting point for explorations into this area as well as to report on the development of an educational approach to electronics programming called haptic programming.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id ijac20053105
id ijac20053105
authors Pranovich, Slava; Achten, Henri; de Vries, Bauke; van Wijk, Jack
year 2005
title Structural Sketcher: Representing and applying well-structured graphic representations in early design
source International Journal of Architectural Computing vol. 3 - no. 1, 75-92
summary Computational drawing support has the potential to improve design support in the early phase. Much work in this area is devoted to input of design information, manipulation, and presentation. Based on a review of current work, we note that among other things, digital drawing tools should be close to the conventions and techniques already used by architects. This is, in principle, possible by processing strokes in a more or less traditional sketch approach, or by offering specialised commands that provide a direct implementation of such conventions. The latter approach is covered by Structural Sketcher. A subset of drawing conventions developed earlier, called graphic units, is adopted within the system. In order to contribute to design support, the application of such graphic units should be fast and intuitive, and the definition of internal relationships should be quick and straightforward. For intuitive manipulation, Structural Sketcher incorporates the "paper and scissors" metaphor, and introduces a novel UI-concept called the KITE. To achieve an easy and fast maintenance of relationships, a graph based on anchor-points is built-up on the fly. Performance of the system has been tested on a quantitative and qualitative basis. The system shows the benefit that graphic units can bring to drawing support, and how these can be implemented. To conclude, limitations and further work are discussed.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id 2005_279
id 2005_279
authors Walz, Steffen P., Schoch, Odilo, Ochsendorf, Mathias and Spindler, Torsten
year 2005
title Serious Fun: Pervasive game design as a CAAD teaching and research method
doi https://doi.org/10.52842/conf.ecaade.2005.279
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 279-286
summary Today and in the future, architectural students must be prepared for designing both physical and adaptive, computer-integrated spaces. The question is: How do we easily and effectively convey architecturally relevant theories and practices of pervasive computing in teaching? In this paper, we present a didactic model that has proved to be a possible answer. During a semester long design class, we supervised an interdisciplinary group of architecture and computer science students who teamworked on an early so called serious pervasive game prototype, entitled “ETHGame”. The class culminated in a two week compact phase and a presentation before ETH representatives involved in e-learning projects. The resulting interactive prototype takes advantage of our campus’s extensive wireless local area network infrastructure, allowing for user positioning and location based learning, servicing, and peer-to-peer communication. The game mutates the whole of the ETH Zurich campus into a knowledge space, issuing position dependent and position relevant questions to players. The ETHGame forces participants to engage with a given space in the form of a quiz and rewards them for collaborating both face-to-face and facelessly. The game helps them build a collective academic and space aware identity whilst being immersed in a sentient environment. Thus, in this paper we are introducing serious pervasive game design as a novel design research and teaching paradigm for CAAD, as well as a e-learning design strategy.
keywords Pervasive Computing; Pervasive Game Design; Serious Games; LocationBased Learning; Knowledge Space
series eCAADe
email
last changed 2022/06/07 07:58

_id 2005_010
id 2005_010
authors Aish, Robert
year 2005
title From Intuition to Precision
doi https://doi.org/10.52842/conf.ecaade.2005.010
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 10-14
summary Design has been described as making inspire decisions with incomplete information. True, we may use prior knowledge, we may even think we understand the causalites involved, but what really matters is exploration: of new forms, of new materials, and speculation about the response to the resulting effects. Essentially, this exploration has its own dynamics, involving intuition and spontaneity, and without which there is no design. But of course we all know that this is not the whole story. Design is different to 'craft'; to directly 'making' or 'doing'. It necessarily has to be predictive in order to anticipate what the consequence of the 'making' or 'doing' will be. Therefore we inevitably have to counter balance our intuition with a well developed sense of premeditation. We have to be able to reason about future events, about the consequence of something that has not yet being made. There is always going to be an advantage if this reasoning can be achieved with a degree of precision. So how can we progress from intuition to precision? What abstractions can we use to represent, externalize and test the concepts involved? How can we augment the cognitive processes? How can we record the progression of ideas? And, how do we know when we have arrived? Design has a symbiotic relationship with geometry. There are many design issues that are independent of any specific configurations. We might call these “pre-geometric” issues. And having arrived at a particular configuration, there may be many material interpretations of the same geometry. We might call these “post-geometric” issues. But geometry is central to design, and without appropriate geometric understanding, the resulting design will be limited. Geometry has two distinct components, one is a formal descriptive system and the other is a process of subjective evaluation.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2005_673
id sigradi2005_673
authors Amorim, Arivaldo Leão de; Daniel Chudak
year 2005
title Digital Historic Heritage: documenting of Pelourinho, Salvador - Bahia, Brazil, with 3D laser scanning technology
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 673-678
summary This paper describes the Pelourinho Project realized past July in Salvador, during the 1st International Conference on 3D Laser Scanning for Heritage Documentation. The Pelourinho located at the historic center of Salvador, is an impressive wide set of buildings listed by UNESCO as World Heritage. The text contains a quickly overview about the 3D laser scanning technology, shows how data are captured and what they stored and what they means. The 3D laser scanning model, another kind of 3D geometric model is called point cloud and represents an excellent way to store data of some particular constructions. Because its irregular shapes it is very arduous to survey and represent these constructions by any other method. The point cloud model is an excellent way to represent with integrity and accuracy these particular complex shapes like the colonial baroque churches in Brazil. [Full paper in Portuguese]
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2005_a_2a_b
id caadria2005_a_2a_b
authors Chieh-Jen Lin
year 2005
title Space layout game: An Interactive Game of Space Layout for Teaching and Representing Design Knowledge
doi https://doi.org/10.52842/conf.caadria.2005.130
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 1, pp. 130-141
summary This paper described a prototype of interactive space layout, a tool for primary stage of architectural space layout called Space Layout Game (SLG). Rather than focused on the automation of space layout, we are interested in interactive responding in manipulative process and assisting teaching and representation of design skills and knowledge. Through composing a prototype of space layouts, reusing and modifying this prototype or other form teachers or other students to adapt to new conditions, students can present their design intensions, and learn layout skills and design knowledge through the manipulative processes
series CAADRIA
email
last changed 2022/06/07 07:55

_id 2005_599
id 2005_599
authors Couceiro, Mauro
year 2005
title Architecture and Biological Analogies
doi https://doi.org/10.52842/conf.ecaade.2005.599
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 599-606
summary The study described in this paper evolves within the larger context of a research aimed at inquiring into analogies between architecture and nature, and more specifically between architecture and biology. Biology is a recursive source of architectural inspiration due to the tight relationship between form and function, the natural balance of forces and the corresponding geometric solutions found in living beings. Roughly, one can classify historical analogies between architecture and biology into two main categories. The first tries to mimic biological forms and the second biological processes. The specific goal of the described study is to find how new technologies can redefine and support the process of constructing such analogies. It uses as a case study a tower project designed by the architect Manuel Gausa (ACTAR, Barcelona) called Tornado Tower because of its complex shape inspired in the frozen form of a tornado. Due to the geometric irregularities of the tower, Gausa’s team had difficulties in designing it, especially because solving the structural problems required constant redrawing. This paper describes the first part of the study which primary goal was to conceive a parametric program that encoded the overall shape of the Tornado Tower. The idea was to use the program to simplify the drawing process. This required a mathematical study of spirals and helices which are at the conceptual basis of the external structure and shape of the tower. However, the program encodes not only the shape of Gausa’s tower, but also the shapes of other buildings with conceptual similarities. Such class of shapes is very recurrent in nature with different scales and with different utilities. Therefore, one can argue that the program makes a mathematical connection between a given natural class of shapes and architecture. The second part of the study will be devoted to extending the program with a genetic algorithm with the goal of guiding the generation of solutions taking into account their structural fitness. This way, the analogy with genetic procedures will be emphasized by the study of the evolution of forms and its limits of feasibility. In summary, the bionic shape analogy is made by the generation of mimetic natural forms and a genetic process analogy starts with the parametric treatment of shape based on code manipulations. At the end the program will establish an analogy between architecture and biology both terms of form and process.
keywords Genetics; Evolutionary Systems; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia05_058
id acadia05_058
authors Daveiga, José and Ferreira, Paulo
year 2005
title Smart and Nano Materials in Architecture
doi https://doi.org/10.52842/conf.acadia.2005.058
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 58-67
summary We describe and analyze the fields of Smart and Nano Materials and their potential impact on architectural design and building fabrication. Distinguishing Smart and Nano materials, Smart Materials perform both sensing and actuating operations, whereas many Nano materials are capable of self-assembly. In general, Smart and Nano materials can perform like living systems, simulating human skin, the body’s muscles, a leaf’s chlorophyll and self-regeneration. Recognizing that the traditional partition between Materials Science and Architecture is obsolete, our intent is to show how these two fields are intrinsically connected, while growing evermore symbiotic as we progress into the futureKeeping the designer in mind, our paper begins with the question: “What Nano and Smart materials can be used in future architectural designs?” Outlining what such materials might mean for architectural fabrication and design, we claim that Smart and Nano Materials can imitate living organisms. Effective implementation of these materials will therefore allow designed spaces to operate as active organs within a larger dynamic organism, synthesizing both expressive intent and pragmatic considerations. This paper is a collaboration between an architect and a materials scientist on the future of materials and their influence in architecture. By giving examples of work already underway we intend to illustrate and suggest directions ranging from the functional to the expressive, from tectonics to morphology. We conclude with a reflection on the importance of future research between our two areas of knowledge.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2005_805
id 2005_805
authors El-Khoury, Nada, De Paoli, Giovanni and Tidafi, Temy
year 2005
title Using Digital Devices to Find New Ways of Representing Audience Visibility in Theatrical Spaces
doi https://doi.org/10.52842/conf.ecaade.2005.805
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 805-810
summary The following paper is in keeping with other pieces of research which tend to broaden the role of today’s computer tools so that they be seen as more than just representative. In fact, more and more studies focus on computer tools used as smart guides in the development stages of the preliminary concept. We therefore present a cognitive and interactive device with characteristics that address a theatre designer’s requirements. It provides information on the visual quality of seats and optimizes their location in order to improve audience visibility. The working method we introduce will serve as a basis for future implementations when designing theatrical facilities and providing for audience visibility.
keywords Visibility; CAD; Theatrical Facility; Digital Devices
series eCAADe
email
last changed 2022/06/07 07:55

_id 2005_547
id 2005_547
authors Elger, Dietrich and Russell, Peter
year 2005
title Crisis? What Crisis?
doi https://doi.org/10.52842/conf.ecaade.2005.547
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 547-556
summary The paper describes the current situation concerning career opportunities in the field of architecture in developed western countries. Several aspects that are almost universal mark this situation. Firstly, there are too many architects chasing traditional work in competition with structural (civil) engineers. This is not surprising in consideration of the fact, that the architectural education industry produces far too many new architects for the economy to absorb. In Germany, the number is almost three times too many. Secondly, the needs of the building industry have changed over the past twenty years so that the skills that architects want to offer are not necessarily those that are sought. Lastly, the constant specialisation of work has continued unabated. Architects, as generalists, have idly watched their areas of expertise be usurped from neighbouring fields like civil and structural engineering The reasons for this crisis are manifold. In the schools of architecture, the discussions often deal with form or formal arguments, which, in fact, have little or no relevance to the building industry. This position was tenable so long as the clients were willing to accept formal arguments in order to receive buildings of high quality or current social relevance (i.e. current architectural fashion). With the dual aspects of globalisation and a shift to maintaining building stocks rather than producing new buildings, the tolerance for “architectural” discussions has been reduced even further. Indeed, the monetary pressures overwhelm almost all other aspects, including so-called green issues. What is more, most of the monetary issues are time based. Time represents, perhaps, the largest pressure in any current planning project. The clients expect expedient, accurate and inexpensive solutions. If architects are not able to produce these, the clients will (and do) go elsewhere. The authors argue that there remain serious problems to be solved for architects and the metier in general. Ever cheaper, ever faster and ever encompassing information technologies offer the architectural community a chance to turn recent trends on their head. By using information technologies to their full potential, architects can reassert themselves as the coordinators of building information and processes. Simply put, this means less photorealistic rendering and more databases, which may be unappealing for those architects who have positioned themselves as “designers” and are able to talk long on form, but short on cost or logistics. Nonetheless, the situation is not lost, so long as architects are able to recognise what is desired from the point of view of the client and what is desired from the point of view of the architect. It is not a question of one or the other. Architects must be able to offer innovative design solutions that not only address the fiscal, legal and programmatic constraints, but also push the boundaries at to the position of architecture in the community at large. For educators, it must be made clear that the real potential architects possess is their encompassing knowledge of the building process including their expertise concerning questions of architectural form, function, history and art. Precisely while they are generalists are architects invaluable in a sea of specialists. The biggest hurdle to asserting this in the past has been the control of the vast amounts of information. This is no longer a problem and also no longer an excuse. In the education of architects, it must be made clear that their role dictates sovereignty over architectural information. Architectural Information Management is a necessary skill alongside the more traditional architectural skills. A brief outlook as to how this might come about is detailed in the paper. The authors propose didactic steps to achieve this. Primarily, the education of computer supported planning should not simply end with a series of lectures or seminars, but culminate in integrated Design Studios (which including Design-Build scenarios).
keywords Architectural Information Mangement, Computer Supported Design Studios, CSCW
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac20053204
id ijac20053204
authors Han, Seung-Hoon
year 2005
title ARCH:DMUVR - A Working Prototype of a Distributed Collaborative Design System
source International Journal of Architectural Computing vol. 3 - no. 2, 203-226
summary This paper outlines a working prototype which suggests a distributed Computer-Aided Architectural Design (CAAD) system to promote a new model of collaborative design. Recently, there has been a growing interest in distributed CAAD integration due to the needs of direct collaboration among project participants. The potential for the integration of information is expected to have a tremendous impact on architecture and the construction industry. The aim of this research is to provide a new paradigm for a CAAD system by combining research on integrated CAAD applications with recent collaboration technologies. The proposed system has been designed and a prototype implemented to produce enough guidelines to foster interest in the development of future CAAD systems on the Internet. To this end, two different scopes of implementation are evaluated: first, global architecture and the functionality of a distributed CAAD system; and, second, the association of an architectural application to the system.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2005_743
id 2005_743
authors Hofmeyer, Herm, Rutten, Harry and Fijneman, Henk
year 2005
title Improving Design using Autonomous Spatial and Structural Generators
doi https://doi.org/10.52842/conf.ecaade.2005.743
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 743-750
summary During a building design process, a structural designer transforms a spatial design into a structural design and this structural system can be improved by optimisation methods or expert views of other structural designers. The improved structural system allows the architect a new spatial design, which can be transformed or altered again by the architect. This design cycle can be repeated several times and is defined as interaction of spatial and structural design. Case studies are used to demonstrate that this interaction occurs in practice and is needed to improve building quality. This paper presents a program with more or less autonomous spatial and structural generators. Each generator will facilitate one direction in the interaction process. Then using both consecutively leads to a design method that provides interaction between spatial and structural design. For the spatial generator, named “room positioning with structural constraints” a space allocation technique is used including constraints that handle structural boundary conditions. A zone generator based on pattern recognition and shape grammars handle the structural design. A Prolog-2 program was developed to demonstrate the application of the two proposed generators. “Zone generation” is performed per building storey and thus represents a horizontal two-dimensional procedure. Similarly “room positioning with structural constraints” is a planar vertical operation. In future these procedures can be made three-dimensional.
keywords Spatial Design, Structural Design, Interaction, Case Study, Data Model.
series eCAADe
email
last changed 2022/06/07 07:50

_id 1ae1
id 1ae1
authors Horne M, Roupé M, Johansson M
year 2005
title Building Information Modelling for Visualisation in AEC Education
source CONVR2005 5th Conference of Construction Applications of Virtual Reality, ADETTI/ISCTE, Durham, UK, 12-13 September 2005
summary This paper outlines the process used to introduce building information modelling into the academic curriculum of built environment students and reflects on the techniques used to ensure appropriate use of parametric tools for the purposes of visualisation. The integration of building information modelling into other curriculum sub-jects is outlined. The study introduces the collaboration between Northumbria University and Chalmers Lind-holmen Visualiseringsstudio and considers the future potential of building information modelling and whether it may contribute to reduced time and cost of creating three dimensional models suitable for Virtual Reality worlds.
keywords Building Information Modelling, Visualisation, Virtual Reality, Built Environment Curriculum, MrViz.
series other
type normal paper
email
last changed 2006/06/08 22:06

_id da71
id da71
authors Horne, Margaret
year 2004
title Visualisation of Martyr’s Square, Beirut
source CONVR2005 5th Conference of Construction Applications of Virtual Reality, ADETTI/ISCTE, Durham, UK, 12-13 September 2005
summary Solidere, a Lebanese joint-stock company, was created by government decree in 1994 to reconstruct Beirut city-centre. The company, a form of public-private partnership, has a majority share holding of former owners and tenants of city-centre property. Several projects are underway, including the redevelopment of Place des Martyrs, once the bustling heart of Beirut but badly damaged during the war. Urban planners in Beirut have recently developed a 3D computer model to visually describe the spatial characteristics of Martyr’s Square and its context, prior to inviting design proposals for an international competition. This paper describes issues pertaining to the development of the model to meet the needs of urban designers and town planners. It also considers potential future uses of the simulation, outlining areas for further research and development.
keywords Beirut, 3D Modelling, Visual Simulation, Town Planning
series other
type normal paper
email
last changed 2006/06/08 22:10

_id fbae
id fbae
authors Horne, Margaret
year 2005
title Virtual Beirut
source CUPUM05 9th International Conference on Computers in Urban Planning and Urban Management, London, 29-30 June 2005
summary This paper describes how urban planners in Beirut are applying three-dimensional computer modelling to aid design decision making in the regeneration programme for the city. The study reports on the recent developments of a computer model of Beirut and its effectiveness in communicating the spatial characteristics of Martyr’s Square, a place of historic significance in the city. An international urban design competition for Martyr’s Square, and its new axis to the sea, is underway to identify new ideas for the development of this area. This paper reports on the process of creating the computer model and feedback from users. It considers future plans for further 3D modelling of the city centre to meet the needs of urban designers.
keywords Beirut, 3D Modelling, Urban Planning, Virtual Reality
series other
type normal paper
email
more http://128.40.111.250/cupum/searchPapers/index.asp
last changed 2006/06/08 00:05

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_221349 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002