CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 559

_id acadia05_212
id acadia05_212
authors Luhan, Gregory A.
year 2005
title Modern Translations, Contemporary Methods: DL-1_Resonance House®
doi https://doi.org/10.52842/conf.acadia.2005.212
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 212-225
summary As the first design-build-fabricate-assemble experiment at our school, the intent of the studio was to design a framework from which to examine a “lived space” through digital-to-digital processes. Moving from digital models and physical stereo lithographic models to hand-fabrication and digital assembly allowed the students to move from creation to completion. As part of our holistic design process, the studio fabricated almost all components for the project. These elements include the wood flooring, the copper and wood skins, the building’s structural panels, and the two-story light vortex. This single-family, in-fill house is located within an historic downtown neighborhood and is subject to historic district zoning regulations, design guidelines, and Board of Architecture Review approvals. The project is analogous to design challenges presenting themselves in historic districts throughout the United States including the Savannah, Georgia site for the 2005 ACADIA Conference. The scale of the project relates well to the horizontal nature of this context and after a formal, televised review process with the local Board of Architecture Review, the project represents a dynamic, yet sympathetic architectural dialogue with the surrounding buildings. The project develops simultaneously from the exterior and interior resulting in two courtyards that mediate the urban “front door” and the private “terrace.” The students designed these areas through a series of two-dimensional axonometric drawings, three-dimensional physical and digital models, and four-dimensional time-based animations. The building massing separates into two core elements: gabled copper volume and wood screen volume. These elements maintain their conceptual purity by using the same types of modulations on their skins. The copper form with its deep-cut reveals and proportionally placed light scoring patterns reflects the horizontal datum lines of the floor, sill, threshold, and ceiling. In contrast, the wood volume reflects these same lines as applied “shadow screens” which create depths that seamlessly tie together the side, rear, and front facades.The hinge point of the house is the light vortex. Designed in Rhino, translated in Catia, fabricated out of aluminum, and clad in stainless steel, this two-story sculptural element will literally wrap light around its surfaces. Like a sunflower, the light vortex, with its angel hair stainless steel finish, responds to the incremental differentiation of light throughout the day. Photosensitive floor-mounted lights designed to augment the volume of natural light will provide a continuous light rendition on the sculpture. The project, scheduled for completion at the end of the 2005 summer session, is at the time of this submission about 60% complete.
series ACADIA
email
last changed 2022/06/07 07:59

_id caadria2005_b_3c_a
id caadria2005_b_3c_a
authors Christopher Lowry
year 2005
title Making Understanding: Research in the application of virtual environments in the teaching of architectural design and technology
doi https://doi.org/10.52842/conf.caadria.2005.093
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 93-101
summary This paper describes how the application of interactive three dimensional computer modelling enables students of architecture to gain a comprehensive insight into how buildings are made. An intimate exploration of what can be, in the student’s perception, a lacklustre subject area is revitalized through the use of virtual building models and introduces the student to the potentials of this medium in communicating their own design work. In addition the published case studies are navigated as one would a web site which is a familiar and comfortable format for the student. Original working drawings and specification provided by architects are utilised in generating detailed three dimensional virtual models of the complete building along with larger scale detail studies of particular building components. The models are then animated or transferred to VRML format for publication within interactive case studies. The case studies may be accessed via the department server for use by staff during lectures and seminars or informally by the individual student.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 2005_599
id 2005_599
authors Couceiro, Mauro
year 2005
title Architecture and Biological Analogies
doi https://doi.org/10.52842/conf.ecaade.2005.599
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 599-606
summary The study described in this paper evolves within the larger context of a research aimed at inquiring into analogies between architecture and nature, and more specifically between architecture and biology. Biology is a recursive source of architectural inspiration due to the tight relationship between form and function, the natural balance of forces and the corresponding geometric solutions found in living beings. Roughly, one can classify historical analogies between architecture and biology into two main categories. The first tries to mimic biological forms and the second biological processes. The specific goal of the described study is to find how new technologies can redefine and support the process of constructing such analogies. It uses as a case study a tower project designed by the architect Manuel Gausa (ACTAR, Barcelona) called Tornado Tower because of its complex shape inspired in the frozen form of a tornado. Due to the geometric irregularities of the tower, Gausa’s team had difficulties in designing it, especially because solving the structural problems required constant redrawing. This paper describes the first part of the study which primary goal was to conceive a parametric program that encoded the overall shape of the Tornado Tower. The idea was to use the program to simplify the drawing process. This required a mathematical study of spirals and helices which are at the conceptual basis of the external structure and shape of the tower. However, the program encodes not only the shape of Gausa’s tower, but also the shapes of other buildings with conceptual similarities. Such class of shapes is very recurrent in nature with different scales and with different utilities. Therefore, one can argue that the program makes a mathematical connection between a given natural class of shapes and architecture. The second part of the study will be devoted to extending the program with a genetic algorithm with the goal of guiding the generation of solutions taking into account their structural fitness. This way, the analogy with genetic procedures will be emphasized by the study of the evolution of forms and its limits of feasibility. In summary, the bionic shape analogy is made by the generation of mimetic natural forms and a genetic process analogy starts with the parametric treatment of shape based on code manipulations. At the end the program will establish an analogy between architecture and biology both terms of form and process.
keywords Genetics; Evolutionary Systems; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia06_510
id acadia06_510
authors Johnson, Jason
year 2006
title Complexity as a Creative Force in Design Variegation, Heterogeneity, Diversity
doi https://doi.org/10.52842/conf.acadia.2006.510
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 510-517
summary This paper describes an experimental project that attempts to use complexity as a creative and vital force within the design process. The project seeks to release architecture from its conventional role as a static urban backdrop and to transform it into a vital, dynamic, and active participant within cities. The project, entitled “Energy Farm”, was instigated by the 2005 International Open Design Competition for a “Performing Arts Island” located within the Han River in Seoul, Korea. Through the exploration of the site and program elements as an interacting matrix of fields, forces, and flows (energy, program, water flow, infrastructure, etc.), our proposal emerged as a variegated landscape marked by its capacities to produce its own energy, interweave heterogeneous threads of structure and program, and instigate a diverse set of scenarios in which physical and virtual realms coalesce. Architecture, in its unique capacity to bridge these realms, can release the rich computation potential of complexity into the physical realm. Within this scenario, architecture becomes a creative and vital agent for productive change with profound social, political, and ecological implications.
series ACADIA
email
last changed 2022/06/07 07:52

_id cdc2008_243
id cdc2008_243
authors Loukissas, Yanni
year 2008
title Keepers of the Geometry: Architects in a Culture of Simulation
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 243-244
summary “Why do we have to change? We’ve been building buildings for years without CATIA?” Roger Norfleet, a practicing architect in his thirties poses this question to Tim Quix, a generation older and an expert in CATIA, a computer-aided design tool developed by Dassault Systemes in the early 1980’s for use by aerospace engineers. It is 2005 and CATIA has just come into use at Paul Morris Associates, the thirty-person architecture firm where Norfleet works; he is struggling with what it will mean for him, for his firm, for his profession. Computer-aided design is about creativity, but also about jurisdiction, about who controls the design process. In Architecture: The Story of Practice, Architectural theorist Dana Cuff writes that each generation of architects is educated to understand what constitutes a creative act and who in the system of their profession is empowered to use it and at what time. Creativity is socially constructed and Norfleet is coming of age as an architect in a time of technological but also social transition. He must come to terms with the increasingly complex computeraided design tools that have changed both creativity and the rules by which it can operate. In today’s practices, architects use computer-aided design software to produce threedimensional geometric models. Sometimes they use off-the-shelf commercial software like CATIA, sometimes they customize this software through plug-ins and macros, sometimes they work with software that they have themselves programmed. And yet, conforming to Larson’s ideas that they claim the higher ground by identifying with art and not with science, contemporary architects do not often use the term “simulation.” Rather, they have held onto traditional terms such as “modeling” to describe the buzz of new activity with digital technology. But whether or not they use the term, simulation is creating new architectural identities and transforming relationships among a range of design collaborators: masters and apprentices, students and teachers, technical experts and virtuoso programmers. These days, constructing an identity as an architect requires that one define oneself in relation to simulation. Case studies, primarily from two architectural firms, illustrate the transformation of traditional relationships, in particular that of master and apprentice, and the emergence of new roles, including a new professional identity, “keeper of the geometry,” defined by the fusion of person and machine. Like any profession, architecture may be seen as a system in flux. However, with their new roles and relationships, architects are learning that the fight for professional jurisdiction is increasingly for jurisdiction over simulation. Computer-aided design is changing professional patterns of production in architecture, the very way in which professionals compete with each other by making new claims to knowledge. Even today, employees at Paul Morris squabble about the role that simulation software should play in the office. Among other things, they fight about the role it should play in promotion and firm hierarchy. They bicker about the selection of new simulation software, knowing that choosing software implies greater power for those who are expert in it. Architects and their collaborators are in a continual struggle to define the creative roles that can bring them professional acceptance and greater control over design. New technologies for computer-aided design do not change this reality, they become players in it.
email
last changed 2009/01/07 08:05

_id sigradi2005_133
id sigradi2005_133
authors Luhan, Gregory A.
year 2005
title From art to part | DL-1_Resonance house®
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 133-138
summary Moving from digital models and physical stereo lithographic models to hand-fabrication and digital assembly allowed the students to move from creation to completion. As part of our holistic design process, the studio fabricated almost all components for the project. These elements include the wood flooring and cantilevered staircase, the copper and wood skins, the building’s structural panels, and the two-story light vortex. This project—a single-family, in-fill house located within an historic downtown neighborhood—is subject to historic district zoning regulations, design guidelines, and Board of Architecture Review approvals. The students designed these areas through a series of two-dimensional plans and axonometric drawings, three-dimensional physical and digital models, and four-dimensional time-based animations. The building massing separates into two core elements: a gabled copper volume and a wood screen volume. The hinge point of the house is the light vortex. Photosensitive floor-mounted lights designed to augment the volume of natural light will provide a continuous light rendition on the sculpture. The project is scheduled for completion in October 2005.
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2006_605
id caadria2006_605
authors RICHARD DANK, ANDREAS GRUBER
year 2006
title RYUGYONG.ORG: Other Levels to the Ryugyong Hotel: An idea on architecture and geopolitics
doi https://doi.org/10.52842/conf.caadria.2006.x.d2g
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 605-607
summary The prestigious international monthly architecture periodical Domus opens its June 2005 issue with the lines: "A ruin of the future? The 330-metre-tall skeleton of an unfinished hotel towers like a concrete pyramid over North Korea's capital, Pyongyang." The magazine's call "to transform the Ryugyong Hotel into a worldwide antenna for ideas" (Boeri et al. 2005, cover) was a pronunciamento we could not resist.
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia06_538
id acadia06_538
authors Senagala, Mahesh
year 2006
title Light Exchange
doi https://doi.org/10.52842/conf.acadia.2006.538
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 538-539
summary The notions of collaborative exchanges, leadership, and entrepreneurialism that cross disciplinary boundaries were promoted in a digital design-build studio taught in spring 2005. With the starting funds of one dollar, the studio took up the challenge of building two full-scale tensile fabric structures that mark the entrances to a downtown San Antonio building. Structures of 1200 square feet total surface area were successfully designed, engineered, and executed within a semester framework at a final cost of $102,490. Collaborations were fostered with 24 industry partners from Asia, Europe, Australia, and USA, including four structural engineers. Innovative pedagogical, collaborative and project management methods were employed. The studio was structured as a self-organized design “firm.” Positions were created and students were “hired” into the firm to play different roles. The studio utilized web-based communication and project management tools. After a four-week warm-up project that established an innovative studio culture, professional schedules were prepared and the engineers were engaged in the collaborative process of designing the anchors, cables, connections and PTFE/PVC membranes. The peculiarities of digitally designing, fabricating and erecting tensile fabric structures were comprehensively explored. The studio completed all the CNC fabrication, concrete footings and membrane fabrication at local workshops through special partnerships.
series ACADIA
email
last changed 2022/06/07 07:56

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2017_184
id ecaade2017_184
authors Almeida, Daniel and Sousa, José Pedro
year 2017
title Tradition and Innovation in Digital Architecture - Reviewing the Serpentine Gallery Pavilion 2005
doi https://doi.org/10.52842/conf.ecaade.2017.1.267
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 267-276
summary Please write your aToday, in a moment when digital technologies are taking command of many architectural design and construction processes, it is important to examine the place and role of traditional ones. Designed by Álvaro Siza and Eduardo Souto de Moura in collaboration with Cecil Balmond, the Serpentine Gallery Pavilion 2005 reflects the potential of combining those two different approaches in the production of innovative buildings. For inquiring this argument, this paper investigates the development of this project from its conception to construction with a double goal: to uncover the relationship between analogical and digital processes, and to understand the architects' role in a geographically distributed workflow, which involved the use of computational design and robotic fabrication technologies. To support this examination, the authors designed and fabricated a 1:3 scale prototype of part of the Pavilion, which also served to check and reflect on the technological evolution since then, which is setting different conditions for design development and collaboration.bstract here by clicking this paragraph.
keywords Serpentine Gallery Pavilion; Computational Design; Digital Fabrication; Wooden Construction; Architectural Representation;
series eCAADe
email
last changed 2022/06/07 07:54

_id 2005_131
id 2005_131
authors Bailey, Rohan
year 2005
title Digital Tools for Design Learning
doi https://doi.org/10.52842/conf.ecaade.2005.131
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 131-138
summary There is growing consensus among architectural critics and educators that there exists an increasing divide between the worlds of architectural education and practice. New social and cultural norms, new materials, and current global concerns, like sustainability, have largely influenced the need for an improved balance/integration between design theory and practice. This places schools of architecture around the world under pressure to provide their graduates with the requisite skills that support responsible design characterized by good design thinking strategies. The Caribbean School of Architecture, in addition to being affected by this predicament, has other pressures on its educational offerings. The region’s lack of resources and particular social issues mandates that graduates of the school adopt a responsible attitude towards design in the region. A positive attitude to such issues as sustainability, energy conservation and community will only come about through an effective transmission of particular architectural knowledge that is relevant to the region. The challenge (globally and in the Caribbean), therefore, is the provision of an innovative and effective way of supporting the student master dialogue in studio, facilitating the transfer of “practical, appropriate knowledge” needed by students to create safe, purposeful and responsible architecture. This paper exists within the research paradigm of providing digital teaching tools to beginning students of architecture. This digital research paradigm seeks to move digital technology (the computer) beyond functioning as an instrumental tool (in visualization, representation and fabrication) to becoming a “Socratic machine” that provides an appropriate environment for design learning. Research funds have been allocated to the author to research and develop the information component of the tool with special reference to the Caribbean. The paper will report on the results of prior investigations, describe the reaction and appreciation of the students and conclude with lessons learnt for the further development of the teaching tool.
keywords Design Education, Digital Design, Teaching Tools
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2005_1_83_123
id cf2005_1_83_123
authors BRUNNER Klaus A. and MAHDAVI Ardeshir
year 2005
title A Software Architecture for Self-updating Life-cycle Building Models
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 423-432
summary This paper describes a computational infrastructure for the realization of a self-updating building information model conceived in the design phase and carried over to the operation phase of a building. As such, it illustrates how computational representations of buildings, which typically serve design support, documentation, and communication functions, can be transported into the post-construction phase. Toward this end, we formulate a number of requirements for the conception and maintenance of life-cycle building information models. Moreover, we describe the architecture and the prototypical implementation of such a model.
keywords building models, sensors, simulation-based control, life-cycle
series CAAD Futures
email
last changed 2006/11/07 07:27

_id ecaade2011_122
id ecaade2011_122
authors Chronis, Angelos; Jagannath, Prarthana; Siskou, Vasiliki Aikaterini; Jones, Jonathan
year 2011
title Sensing digital co-presence and digital identity: Visualizing the Bluetooth landscape of the City of Bath
doi https://doi.org/10.52842/conf.ecaade.2011.087
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.87-92
summary The impact of ubiquitous digital technologies on the analysis and synthesis of our urban environment is undoubtedly great. The urban topography is overlaid by an invisible, yet very tangible digital topography that is increasingly affecting our urban life. As W. J. Mitchell (Mitchell 2005) pointed out, the digital revolution has filled our world with “electronic instruments of displacement” that “embed the virtual in the physical, and weave it seamlessly into daily urban life”. The mobile phone, the most integrated mobile device is closely related to the notion of a digital identity, our personal identity on this digital space. The Bluetooth is the mainly used direct communication protocol between mobile phones today and in this scope, each device has its own unique ID, its “MAC address”. This paper investigates the potential use of recording and analysing Bluetooth enabled devices in the urban scale in understanding the interrelation between the physical and the digital topographies.
wos WOS:000335665500009
keywords Pervasive systems; digital presence; urban encounter; digital identity
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
doi https://doi.org/10.52842/conf.acadia.2018.404
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2005_535
id sigradi2005_535
authors Costa, Lucia Maria S.A .; Yuri Queiroz Abreu Torres, Erivelton Muniz da Silva, Leonardo Ventapane, Ana Lucia Cordeiro Luz
year 2005
title Carioca urban waters: digital representations
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 535-539
summary The main objective of this paper is to discuss the value of digital graphic representation as a tool to display research findings in Landscape Architecture and Urban Design. This is discussed through the presentation of a web site named Águas Urbanas Cariocas. The paper, after briefly presenting the research context, explains the process of the making of the site, highlighting its main aspects. It concludes arguing the value of graphic representation as one of the ways of interacting different knowledges. [Full paper in Portuguese]
series SIGRADI
email
last changed 2016/03/10 09:49

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia05_058
id acadia05_058
authors Daveiga, José and Ferreira, Paulo
year 2005
title Smart and Nano Materials in Architecture
doi https://doi.org/10.52842/conf.acadia.2005.058
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 58-67
summary We describe and analyze the fields of Smart and Nano Materials and their potential impact on architectural design and building fabrication. Distinguishing Smart and Nano materials, Smart Materials perform both sensing and actuating operations, whereas many Nano materials are capable of self-assembly. In general, Smart and Nano materials can perform like living systems, simulating human skin, the body’s muscles, a leaf’s chlorophyll and self-regeneration. Recognizing that the traditional partition between Materials Science and Architecture is obsolete, our intent is to show how these two fields are intrinsically connected, while growing evermore symbiotic as we progress into the futureKeeping the designer in mind, our paper begins with the question: “What Nano and Smart materials can be used in future architectural designs?” Outlining what such materials might mean for architectural fabrication and design, we claim that Smart and Nano Materials can imitate living organisms. Effective implementation of these materials will therefore allow designed spaces to operate as active organs within a larger dynamic organism, synthesizing both expressive intent and pragmatic considerations. This paper is a collaboration between an architect and a materials scientist on the future of materials and their influence in architecture. By giving examples of work already underway we intend to illustrate and suggest directions ranging from the functional to the expressive, from tectonics to morphology. We conclude with a reflection on the importance of future research between our two areas of knowledge.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2005_000
id 2005_000
authors Duarte, José Pinto, Ducla-Soares, Gonçalo and Sampaio, A. Zita (Eds.)
year 2005
title Digital Design: The Quest for New Paradigms
doi https://doi.org/10.52842/conf.ecaade.2005
source 23nd eCAADe Conference Proceedings [ISBN 0-9541183-3-2], Lisbon (Portugal) 21-24 September 2005, 880 p.
summary As the field of computer-aided design evolved over the last thirty years or so, it has witnessed five changes of emphasis in research direction. In the first stage, the use of computers in architecture focused on the development of Computer Aided Design (CAD), that is, systems that simulated the use of drafting tools, and research was mainly concerned with the satisfaction of designers' ergonomic needs. In the second stage, there were efforts to use computer tools in non-graphical aspects of designing, such as the use of Data Base Management Systems (DBMS) in the quantity survey of buildings. The concern was to satisfy the cognitive needs of designers by focusing on the way information and knowledge were perceived, acquired, stored, and processed. In the third stage, the focus shifted to the development of realistic models of buildings to permit the assessment of design proposals. In the fourth stage, the focus was on studies concerned with the encoding of architectural knowledge into design tools (KBMS), and the discussion was whether to go towards design automation or design supporting tools. In the fifth stage, with the advent of the Internet and the development of communication tools, research became focused on the collaborative and social aspects of design activity. In recent years, research also became concerned with the exploration of the physical implications of digital media in the production of artefacts. Today, there is a vast range of research interests and approaches, but the quest for new, unifying paradigms continues.
series eCAADe
type normal paper
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id acadia05_114
id acadia05_114
authors Due Schmidt, Anne Marie
year 2005
title Navigating towards digital tectonic tools
doi https://doi.org/10.52842/conf.acadia.2005.114
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 114-127
summary The computer holds a great potential to break down the barriers between architecture and the technical aspects relating to architecture, thus supporting innovative architecture with an inner correspondence between form and technique. While the differing values in architecture and technique can seem like opposites, the term tectonics deals with creating a meaningful relationship between the two. The aim of this paper is to investigate what a digital tectonic tool could be and what relationship with technology it should represent. An understanding of this relationship can help us not only to understand the conflicts in architecture and the building industry but also bring us further into a discussion of how architecture can use digital tools. The investigation is carried out firstly by approaching the subject theoretically through the term tectonics and by setting up a model of the values a tectonic tool should encompass. Secondly the ability and validity of the model are shown by applying it to a case study of Jørn Utzon’s work on Minor Hall in Sydney Opera House - for the sake of exemplification the technical field focused on in this paper is room acoustics. Thirdly the relationship between the model of tectonics and the case will be compared and lastly a discussion about the characteristics of a tectonic tool and its implications on digital tectonic tools will be carried out.
series ACADIA
email
last changed 2022/06/07 07:55

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_697443 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002