CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 559

_id 6795
id 6795
authors KOUZELEAS Stelios
year 2005
title DEFINITION OF A METHOD OF LIMITS OF THE SIMPLIFICATION OF A HALL MODEL IN A CAD SYSTEM TO DIMINISH FALSIFICATION OF ACOUSTIC SIMULATION RESULTS
source International Congress eCAADe 2005 (Education and research in Computer Aided Architectural Design in Europe), subject : “Digital Desing : the quest for new paradigms”, ISBN 0-9541183-2-4, pp. 695-704, Technical University of Lisbon, Portugal, 21-24 September 2005
summary During the modelling, because of the sometimes complex architectural shape of halls, we were forced to introduce simplifications in order to carry out calculations and simulation operations on these halls, as the calculation software requires plane surfaces. This paper presents a developed tool adapted on a CAD modelling system (AutoCAD), which defines an “average limits” of the model simplification operation in order to control and diminish the falsification of calculation and simulation results on this model, such as the architectural acoustic simulation. The process of the elaboration and the adjustment of the simplified models of the Grand Theatre of Bordeaux (GTB) based on acoustical measurements and their calculation results are described in detail in a previous article (Kouzeleas and Semidor, 2001). The analysis process of the consequences of the hall model simplification on the acoustical simulation results and the applied simplification methods are described in a PhD thesis (Kouzeleas, 2002). This article is based on this analysis process in order to apply it on several simplified models of the Amphitheatre of the Architecture School of Bordeaux (Amphi-EAPB). The comparison in a CAD system (AutoCAD) of the acoustical calculation results and the areas after simplification of the simplified models of these two halls made with AutoCAD, via the developed tool adapted on the AutoCAD, permit to define a “limits average of a hall model simplification” before the falsification of these calculation results.
series other
type normal paper
email
more http://www.civil.ist.utl.pt/ecaade05/
last changed 2005/10/25 12:19

_id 2005_695
id 2005_695
authors Kouzeleas, Stelios Th.
year 2005
title Definition of a Method of Limits of the Simplification of a Hall Model in a CAD System to Diminish Falsification of Acoustic Simulation Results
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 695-704
doi https://doi.org/10.52842/conf.ecaade.2005.695
summary During the modelling, because of the sometimes complex architectural shape of halls, we were forced to introduce simplifications in order to carry out calculations and simulation operations on these halls, as the calculation software requires plane surfaces. This paper presents a developed tool adapted on a CAD modelling system (AutoCAD), which defines an “average limits” of the model simplification operation in order to control and diminish the falsification of calculation and simulation results on this model, such as the architectural acoustic simulation. The process of the elaboration and the adjustment of the simplified models of the Grand Theatre of Bordeaux (GTB) based on acoustical measurements and their calculation results are described in detail in a previous article (Kouzeleas and Semidor, 2001). The analysis process of the consequences of the hall model simplification on the acoustical simulation results and the applied simplification methods are described in a PhD thesis (Kouzeleas, 2002). This article is based on this analysis process in order to apply it on several simplified models of the Amphitheatre of the Architecture School of Bordeaux (Amphi- EAPB). The comparison in a CAD system (AutoCAD) of the acoustical calculation results and the areas after simplification of the simplified models of these two halls made with AutoCAD, via the developed tool adapted on the AutoCAD, permit to define a “limits average of a hall model simplification” before the falsification of these calculation results.
keywords Calculation Cad Program Integrated Development ; Design Process ; 3D Modeling ; Performance Simulation ; Acoustic Simulation Results
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac20053304
id ijac20053304
authors Lyon, Eduardo
year 2005
title Autopoiesis and Digital Design Theory: CAD Systems as Cognitive Instruments
source International Journal of Architectural Computing vol. 3 - no. 3, 317-334
summary In contrast to traditional models of design process fundamentally defined by the abstract manipulation of objects, this study recognizes that the resources available for rethinking architecture are to be found in a reformulation of its theory and practice. This reformation should be based on non-linear design processes in which dynamic emergence and invention take the place of a linear design process fixed on a particular object evolution. Advances in computation thinking and technology have stimulated the design and formulation of a large number of design software. Its elaboration supposes a new conceptualization of our discipline's knowledge, in a body of principles and regulations, which commands the artifact's design and its realization; therefore, it constitutes a preliminary datum for its comprehension, and thereby is of theoretical importance. Despite the continuous increment of power in computers and software capacities, the creative space of freedom defined by them acting as cognitive instruments remains almost unexplored. Therefore, we propose a change from a design knowledge based on objects to one focused on design as a network of processes. In addition, this study explores the concept of Distributed Cognition in order to redefine the use of digital tools in design process as Cognitive Instruments.
series journal
more http://www.ingentaconnect.com/search/expand?pub=infobike://mscp/ijac/2005/00000003/00000003/art00005
last changed 2007/03/04 07:08

_id ijac20053103
id ijac20053103
authors Malkawi, Ali M.; Srinivasan, Ravi S.
year 2005
title Interfacing with the real space and its performance
source International Journal of Architectural Computing vol. 3 - no. 1, 43-56
summary This paper presents an immersive gesture-recognition-based system to visualize the indoor thermal environment using Computational Fluid Dynamics (CFD). To enable efficient visualization of CFD in actual space, an Augmented Reality system was integrated with a CFD simulation engine. To facilitate efficient data manipulation of the simulated postprocessed CFD data and to increase user control of the immersive environment, an intuitive method of Human-Computer Interaction (HCI) has been incorporated using gesture and speech recognition. While gesture recognition aids in transforming hand postures into command functions through forward kinematics and computation of hand segment positions and their joint angles, speech recognition allows better control of the data manipulation. This enabled real-time interactions between the users and simulated CFD results in actual space.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id acadia05_012
id acadia05_012
authors Anshuman, Sachin
year 2005
title Responsiveness and Social Expression; Seeking Human Embodiment in Intelligent Façades
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 12-23
doi https://doi.org/10.52842/conf.acadia.2005.012
summary This paper is based on a comparative analysis of some twenty-six intelligent building facades and sixteen large media-facades from a socio-psychological perspective. It is not difficult to observe how deployment of computational technologies have engendered new possibilities for architectural production to which surface-centeredness lies at that heart of spatial production during design, fabrication and envelope automation processes. While surfaces play a critical role in contemporary social production (information display, communication and interaction), it is important to understand how the relationships between augmented building surfaces and its subjects unfold. We target double-skin automated facades as a distinct field within building-services and automation industry, and discuss how the developments within this area are over-occupied with seamless climate control and energy efficiency themes, resulting into socially inert mechanical membranes. Our thesis is that at the core of the development of automated façade lies the industrial automation attitude that renders the eventual product socially less engaging and machinic. We illustrate examples of interactive media-façades to demonstrate how architects and interaction designers have used similar technology to turn building surfaces into socially engaging architectural elements. We seek opportunities to extend performative aspects of otherwise function driven double-skin façades for public expression, informal social engagement and context embodiment. Towards the end of the paper, we propose a conceptual model as a possible method to address the emergent issues. Through this paper we intend to bring forth emergent concerns to designing building membrane where technology and performance are addressed through a broader cultural position, establishing a continual dialogue between the surface, function and its larger human context.
series ACADIA
email
last changed 2022/06/07 07:54

_id cf2005_1_83_123
id cf2005_1_83_123
authors BRUNNER Klaus A. and MAHDAVI Ardeshir
year 2005
title A Software Architecture for Self-updating Life-cycle Building Models
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 423-432
summary This paper describes a computational infrastructure for the realization of a self-updating building information model conceived in the design phase and carried over to the operation phase of a building. As such, it illustrates how computational representations of buildings, which typically serve design support, documentation, and communication functions, can be transported into the post-construction phase. Toward this end, we formulate a number of requirements for the conception and maintenance of life-cycle building information models. Moreover, we describe the architecture and the prototypical implementation of such a model.
keywords building models, sensors, simulation-based control, life-cycle
series CAAD Futures
email
last changed 2006/11/07 07:27

_id acadia05_156
id acadia05_156
authors Cabrinha, Mark
year 2005
title From Bézier to NURBS: Integrating Material and Digital Techniques through a Plywood Shell
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 156-169
doi https://doi.org/10.52842/conf.acadia.2005.156
summary The development of digital fabrication has reintroduced material processes with digital processes. There has been much discussion about the tool and the objects of the tool, but little discussion of the implication of the material process on the digital process. A brief historical review on the development of computer numerical control and the origins of the Bézier curve reveals an instrumental fact: computer numerical controlled tools necessitated advancements in computational surfaces which eventually led to NURBS (Non-Uniform Rational B-Splines) surfaces. In other words, the origins of NURBS surfaces resides in its relation to material processes, rather than many current approaches that develop free form surfaces and then force the tool onto the material without regard to the material properties. From this historical and mathematical review, this project develops toward more intelligent construction methods based on the integration of NURBS differential geometry paired with material qualities and processes. Specifically, a digital technique of developing conceptual NURBS geometry into piecewise surface patches are then flattened based on the material thickness and density. From these flattened patches, a material technique is developed to intelligently remove material to allow the rigid flat material to re-develop into physical surface patches. The goal of this research is to develop digital and material techniques toward intelligent construction based on the correspondence between digitally driven surface and digitally driven material processes. The application of this technique as a rational and flexible system is to support the dynamic response of form and material toward such performative aspects as structure, daylight, ventilation, and thermal properties.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2005_647
id 2005_647
authors Caldas, Luisa G.
year 2005
title Three-Dimensional Shape Generation of Low-Energy Architectural Solutions using Pareto Genetic Algorithms
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 647-654
doi https://doi.org/10.52842/conf.ecaade.2005.647
summary This paper extends on a previous work on the application of a Generative Design System [GDS] to the evolution, in a computational environment, of three-dimensional architectural solutions that are energy-efficient and adapted to the climatic environment where they are located. The GDS combines a well-known building energy simulation software [DOE2.1E] with search procedures based on Genetic Algorithms and on Pareto optimization techniques, successfully allowing to tackle complex multi-objective problems. In the experiments described, architectural solutions based on a simplified layout were generated in response to two often-conflicting requirements: improving the use of daylighting in the space, while controlling the amount of energy loss through the building fabric. The choice of a cold climate like Chicago provided an adequate framework for studying the role of these opposing forces in architectural form generation. Analysis of results shows that building characteristics that originate successful solutions extend further than the building envelope. Issues of massing, aspect ratio, surface-to-volume ratio, orientation, and others, emerge from the analysis of solutions generated by the GDS, playing a significant role in dictating whether a given architectural form will prove adapted to its climatic and energy requirements. Results suggest that the questions raised by the exploration of form generation driven by environmental concerns are complex, deserving the pursuit of further experiments, in order to better understand the interaction of variables that the evolutionary process congregates.
keywords Generative Design System, Genetic Algorithms, Evolutionary Architecture, Artificial Intelligence in Design, Building Energy Simulation, Bioclimatic Architecture, Environmental Design.
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20053403
id ijac20053403
authors Datta, Sambit; Beynon, David
year 2005
title A Computational Approach to the Reconstruction of Surface Geometry from Early Temple Superstructures
source International Journal of Architectural Computing vol. 3 - no. 4, 471-486
summary Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id ecaade2024_230
id ecaade2024_230
authors Fekar, Hugo; Novák, Jan; Míèa, Jakub; Žigmundová, Viktória; Suleimanova, Diana; Tsikoliya, Shota; Vasko, Imrich
year 2024
title Fabrication with Residual Wood through Scanning Optimization and Robotic Milling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 25–34
doi https://doi.org/10.52842/conf.ecaade.2024.1.025
summary The project deals with the use of residual wood of tree stumps and roots through scanning, optimization and robotic milling. Wood logging residue makes up to 50 percent of the trees harvested biomass. (Hakkila and Parikka 2002). Among prevailing strategies is leaving residue on site, and recovering residue for bioenergy. (Perlack and others 2005). The project explores the third strategy, using parts of the logging residue for fabrication, which may reduce the overall amount of wood logging volume. Furthermore approach aims for applying residue in its natural form and taking advantage of specific local characteristics of wood (Desch and Dinwoodie 1996). The project applies the strategy on working with stump and roots of an oak tree. Due to considerations of scale, available milling technics and available resources, chosen goal of the approach is to create a functioning chair prototype. Among the problems of the approach is the complex shape of the residue, uneven quality of wood, varying humidity and contamination with soil. After cleaning and drying, the stump is scanned and a 3D model is created. The 3D model od a stump is confronted with a 3D modelled limits of the goal typology (height, width, length, sitting surface area and overal volume of a chair) and topological optimization algorithm is used to iteratively reach the desired geometry. Unlike in established topological optimization proces, which aims for a minimal volume, the project attempts to achieve required qualities with removing minimal amount of wood. Due to geometric complexity of both stump and goal object, milling with an 6axis industrial robotic arm and a rotary table was chosen as a fabrication method. The object was clamped to the board (then connected to a rotary table) in order to provide precise location and orientation in 3D space. The milling of the object was divided in two parts, with the seating area milled in higher detail. Overall process of working with a residual wood that has potential to be both effective and present aesthetic quality based on individual characteristics of wood. Further development can integrate a generative tool which would streamline the design and fabrication proces further.
keywords Robotic arm milling, Scanning, Residual wood
series eCAADe
email
last changed 2024/11/17 22:05

_id 2005_399
id 2005_399
authors Johansson, Mikael and Roupé, Mattias
year 2005
title From CAD to VR – Implementations for Urban Planning and Building Design
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 399-405
doi https://doi.org/10.52842/conf.ecaade.2005.399
summary At present time, three-dimensional objects are often represented with 2D-data in urban planning and building design. In order to get all the involved parties to fully understand a certain project, this may not be enough. More and more projects therefore take use of the Virtual Reality (VR) technique as a complement to traditional 2D drawings and sketches. All the involved parties can then share a common frame of reference for all discussions regarding a certain project. Unfortunately, the technique is not yet adapted to fit the current building design process. In this paper, we present a solution for semi-automatic generation of a VR-model based on 3D CAD information and aerial photos obtained from the City Planning Authorities in Sweden. The data is imported to support real-time editing of terrain, roads and buildings. We also present a framework for importing 3D-models created in Autodesk Revit which enables a seamless integration of modern 3D CAD and VR-models. The features are implemented in a software developed at Chalmers Visualization studio (Gothenburg, Sweden) and technical details about terrain handling and speed-up techniques will be given.
keywords Virtual Reality; 3D City modeling; Urban planning; Terrain; Visualization
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2005_1_61_209
id cf2005_1_61_209
authors LEE Chia-Hsun, HU Yuchang and SELKER Ted
year 2005
title iSphere: A Proximity-based 3D Input Interface
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 281-290
summary This paper presents a 24 degree of freedom input device for 3D modeling. iSphere uses the proximity information of pulling-out and pressing-in capacitive sensors to manipulate 12 control points of a 3D surface simultaneously . The iSphere dodecahedron is demonstrated manipulating an analog parametric model with high-level modeling concepts like push or pull the 3D surfaces. Our pilot experiment shows that iSphere saved many steps of selecting the control point and going through menus. Experts were used to those extra steps and still found themselves doing them but novices saved significant time for surface shaping tasks. 3D systems are benefited to execute high-level modeling commands, but lacking of fidelity is a great issue of analog input device.
keywords 3D input device, proximity sensing, parametric modeling, human-computer interaction
series CAAD Futures
email
last changed 2006/11/07 07:27

_id ddss2006-hb-187
id DDSS2006-HB-187
authors Lidia Diappi and Paola Bolchi
year 2006
title Gentrification Waves in the Inner-City of Milan - A multi agent / cellular automata model based on Smith's Rent Gap theory
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 187-201
summary The aim of this paper is to investigate the gentrification process by applying an urban spatial model of gentrification, based on Smith's (1979; 1987; 1996) Rent Gap theory. The rich sociological literature on the topic mainly assumes gentrification to be a cultural phenomenon, namely the result of a demand pressure of the suburban middle and upper class, willing to return to the city (Ley, 1980; Lipton, 1977, May, 1996). Little attempt has been made to investigate and build a sound economic explanation on the causes of the process. The Rent Gap theory (RGT) of Neil Smith still represents an important contribution in this direction. At the heart of Smith's argument there is the assumption that gentrification takes place because capitals return to the inner city, creating opportunities for residential relocation and profit. This paper illustrates a dynamic model of Smith's theory through a multi-agent/ cellular automata system approach (Batty, 2005) developed on a Netlogo platform. A set of behavioural rules for each agent involved (homeowner, landlord, tenant and developer, and the passive 'dwelling' agent with their rent and level of decay) are formalised. The simulations show the surge of neighbouring degradation or renovation and population turn over, starting with different initial states of decay and estate rent values. Consistent with a Self Organized Criticality approach, the model shows that non linear interactions at local level may produce different configurations of the system at macro level. This paper represents a further development of a previous version of the model (Diappi, Bolchi, 2005). The model proposed here includes some more realistic factors inspired by the features of housing market dynamics in the city of Milan. It includes the shape of the potential rent according to city form and functions, the subdivision in areal submarkets according to the current rents, and their maintenance levels. The model has a more realistic visualisation of the city and its form, and is able to show the different dynamics of the emergent neighbourhoods in the last ten years in Milan.
keywords Multi agent systems, Housing market, Gentrification, Emergent systems
series DDSS
last changed 2006/08/29 12:55

_id caadria2005_a_7c_f
id caadria2005_a_7c_f
authors M.N.H. Siddique, Qazi A. Mowla, Mohammad A. Al Masum
year 2005
title VIRTUALITY IN ARCHITECTURE: A DESIGN METAPHOR
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 1, pp. 342-350
doi https://doi.org/10.52842/conf.caadria.2005.342
summary Traditionally, architecture in its design process employs physical matter, requires physical presence and relies on real world environment using conventional methods of 2D depictions such as paper and pen or 3D representations such as physical models and communicates design ideas in verbal or text-based form. The conventional design process, for example an interior design, a residential house, a commercial complex or even urban design projects, follows the same hierarchy of activities. Efforts are made to the satisfaction of both parties to give the ideas of a physical shape through sketches, drafts and models which may take weeks even months. Finally the project gets its final shape in a working drawing, 3D visualisation or model making. This process is time consuming and somewhat redundant. In recent years technology has offered architects a new tool - the virtual environment. Architects use virtual environment increasingly as device of communication and presentation of design intensions. Virtual environment enables users to interact in real-time with design but unfortunately have not been used widely in the process of design development. The aim of this paper is to investigates the relationship between present design process and the emerging technology of virtual reality, establish a relationship between the two and its influence on architecture to form a new translated design process and communication, an interface between architect and client.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2005_1_31_28
id cf2005_1_31_28
authors PENG Chengzhi
year 2005
title Townscaping: Development of Dynamic Virtual City Augmented 3D Sketch Design Tools
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 105-114
summary The paper presents the development of an experimental Web-based design environment called Townscaping to be used at the conceptual stage of architectural and urban design. Inspired by Gordon Cullen's seminal work on Townscape (1960's-1970's), the idea of Townscaping is to explore how 3D digital sketch design tools could be developed to operate in connection with a dynamic virtual city system under a user's direct control. A prototype of Townscaping has been designed and implemented on the basis of an existing dynamic virtual city system. In Townscaping, a set of tools is provided for users to create and edit 3D graphic elements to be positioned directly onto the user-specified virtual city models. One of the key features of Townscaping is to enable sketching while navigation: designers can perform sketch design and gain immediate visual feedback while navigating the 3D virtual city models to any viewpoint at any moment. The current study suggests that it is feasible for virtual city models to serve as interactive urban contexts for 3D sketch design. Townscaping is considered primarily a research platform with which we are interested in investigating if designers' engaging in 3D space conceptions may be enhanced through interacting and sketching with virtual townscapes.
keywords virtual city, 3D sketch design, interactive urban visualisation, web-based design
series CAAD Futures
email
last changed 2006/11/07 07:27

_id 2005_357
id 2005_357
authors Pita, Javier
year 2005
title Analogous Models and Architecture
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 357-364
doi https://doi.org/10.52842/conf.ecaade.2005.357
summary Among the many possible ways of classifying the concept of “modelling”, Maldonado refers to “homologies” when structure but not shape and function are similar; “analogies” when structure and function are similar, but not shape; and “isomorphisms” when structure and shape are similar, but function may or may not be similar. Traditional artistic representation would basically fall into the category of isomorphisms, whilst analogous models are to be found mainly in activities such as magic, play or industry. Other ways of representing reality, such as architectural models or drawings, are also traditionally regarded as isomorphisms. In the course of the last century, this panorama has been altered somewhat by the post-industrial or second industrial revolution in computing and communications. Using mathematical algorithms, the computing tool has an enormous capacity to describe things of extremely diverse nature: from the shape of everyday objects to relatively complex human behaviours, these can all be described using the common language of bits. Alongside developments in computing, the world of communications has been providing us with increasingly advanced means of transmitting information, including sophisticated systems capable of emulating our own perceptions. This paper is intended as a contribution to the theoretical debate conducted over recent years on the considerable shift that has occurred in architectural representation techniques. The analysis that follows highlights a two-fold change in traditional representation techniques: on the one hand, a change in the nature of the model (as is discussed in this paper); and on the other, a modification of the interfaces or communication and perception mechanisms of the model. The conjunction of these two factors has led to the emergence of representation modes that can no longer be regarded simply as isomorphisms of reality. Insofar as virtual spaces have the capacity for us to move, to interact, in short to inhabit them, they should be regarded as “analogous models” of architectural space. In other words, there has been a shift away from representation modes based on illusion in favour of those based on simulation.
keywords Representation, Models, Virtual Space, Virtual Reality
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2005_1_72_160
id cf2005_1_72_160
authors SASS Lawrence
year 2005
title Wood Frame Grammar
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 383-392
summary This paper demonstrates a novel method to generate house designs completely from 3/4” plywood sheets. A shape grammar routine is employed to divide an initial solid shape into constructible components for fabrication by CNC wood routing. The paper demonstrates programmable functions that can be performed using CAD scripting. Future goals for the grammar are to develop CAD programs for digital fabrication using CNC routers. The programs will automate the fabrication process allowing the designer to focus on the visual aspect of design evaluation at any scale with little concern for constructability.
keywords CNC , shape grammars, scripting
series CAAD Futures
email
last changed 2006/11/07 07:27

_id 2005_373
id 2005_373
authors Ucelli, Giuliana, Conti, Giuseppe and De Amicis, Raffaele
year 2005
title Shape Knowledge Embedded in a Collaborative Virtual Design Environment for Architectural Design
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 373-381
doi https://doi.org/10.52842/conf.ecaade.2005.373
summary VR-based design environment have been traditionally not connected to companies’ design repositories and knowledge management systems. Till now these tools are mainly used for the initial exploration of innovative and original three-dimensional spaces and curves. Our approach encourages the use of VRbased design environments as design tools from where to reuse design solutions and to access design information, which are stored in internal repositories. This vision goes towards the development of a VR-based integrated design platform. Further, today’s knowledge management systems show evident limitations when dealing with multimedia files and 3D models. In order to overcome this limitation a framework for embedding in our VR-based design environment a Knowledge Management system for multimedia content has been developed and it is here described. Our solution implies the use of annotation languages such as the recent MPEG7 ISO/IEC (Multimedia Content Description Interface) standard for metadata, which is based on the XML language. Data types handled in our system are multimedia formats including text, audio, video, images, and 3D models. The main contribution of our research activity is in providing an innovative and original approach for supporting the design process, which takes advantage both of the visualization and design capabilities of virtual reality technology and of the reuse of design solutions directly in VE, through the retrieval of 3D models and multimedia data from various sources.
keywords Virtual Reality, Collaborative Architectural Design, Design Reuse, Content Retrieval
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_755576 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002