CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 235

_id acadia05_012
id acadia05_012
authors Anshuman, Sachin
year 2005
title Responsiveness and Social Expression; Seeking Human Embodiment in Intelligent Façades
doi https://doi.org/10.52842/conf.acadia.2005.012
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 12-23
summary This paper is based on a comparative analysis of some twenty-six intelligent building facades and sixteen large media-facades from a socio-psychological perspective. It is not difficult to observe how deployment of computational technologies have engendered new possibilities for architectural production to which surface-centeredness lies at that heart of spatial production during design, fabrication and envelope automation processes. While surfaces play a critical role in contemporary social production (information display, communication and interaction), it is important to understand how the relationships between augmented building surfaces and its subjects unfold. We target double-skin automated facades as a distinct field within building-services and automation industry, and discuss how the developments within this area are over-occupied with seamless climate control and energy efficiency themes, resulting into socially inert mechanical membranes. Our thesis is that at the core of the development of automated façade lies the industrial automation attitude that renders the eventual product socially less engaging and machinic. We illustrate examples of interactive media-façades to demonstrate how architects and interaction designers have used similar technology to turn building surfaces into socially engaging architectural elements. We seek opportunities to extend performative aspects of otherwise function driven double-skin façades for public expression, informal social engagement and context embodiment. Towards the end of the paper, we propose a conceptual model as a possible method to address the emergent issues. Through this paper we intend to bring forth emergent concerns to designing building membrane where technology and performance are addressed through a broader cultural position, establishing a continual dialogue between the surface, function and its larger human context.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2005_190
id sigradi2005_190
authors Ataman, Osman
year 2005
title The digital architecture of tomorrow
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 190-193
summary This paper presents an ongoing research project about the development of the materials and fabrication techniques for a fundamentally new class of architectural composite. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
series SIGRADI
last changed 2016/03/10 09:47

_id ijac20053202
id ijac20053202
authors Ataman, Osman
year 2005
title Integrating Digital and Building Technologies: Towards a New Architectural Composite
source International Journal of Architectural Computing vol. 3 - no. 2, 181-190
summary This paper presents an ongoing research project about the development of the materials and fabrication techniques for a fundamentally new class of architectural composite. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id acadia05_156
id acadia05_156
authors Cabrinha, Mark
year 2005
title From Bézier to NURBS: Integrating Material and Digital Techniques through a Plywood Shell
doi https://doi.org/10.52842/conf.acadia.2005.156
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 156-169
summary The development of digital fabrication has reintroduced material processes with digital processes. There has been much discussion about the tool and the objects of the tool, but little discussion of the implication of the material process on the digital process. A brief historical review on the development of computer numerical control and the origins of the Bézier curve reveals an instrumental fact: computer numerical controlled tools necessitated advancements in computational surfaces which eventually led to NURBS (Non-Uniform Rational B-Splines) surfaces. In other words, the origins of NURBS surfaces resides in its relation to material processes, rather than many current approaches that develop free form surfaces and then force the tool onto the material without regard to the material properties. From this historical and mathematical review, this project develops toward more intelligent construction methods based on the integration of NURBS differential geometry paired with material qualities and processes. Specifically, a digital technique of developing conceptual NURBS geometry into piecewise surface patches are then flattened based on the material thickness and density. From these flattened patches, a material technique is developed to intelligently remove material to allow the rigid flat material to re-develop into physical surface patches. The goal of this research is to develop digital and material techniques toward intelligent construction based on the correspondence between digitally driven surface and digitally driven material processes. The application of this technique as a rational and flexible system is to support the dynamic response of form and material toward such performative aspects as structure, daylight, ventilation, and thermal properties.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2005_647
id 2005_647
authors Caldas, Luisa G.
year 2005
title Three-Dimensional Shape Generation of Low-Energy Architectural Solutions using Pareto Genetic Algorithms
doi https://doi.org/10.52842/conf.ecaade.2005.647
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 647-654
summary This paper extends on a previous work on the application of a Generative Design System [GDS] to the evolution, in a computational environment, of three-dimensional architectural solutions that are energy-efficient and adapted to the climatic environment where they are located. The GDS combines a well-known building energy simulation software [DOE2.1E] with search procedures based on Genetic Algorithms and on Pareto optimization techniques, successfully allowing to tackle complex multi-objective problems. In the experiments described, architectural solutions based on a simplified layout were generated in response to two often-conflicting requirements: improving the use of daylighting in the space, while controlling the amount of energy loss through the building fabric. The choice of a cold climate like Chicago provided an adequate framework for studying the role of these opposing forces in architectural form generation. Analysis of results shows that building characteristics that originate successful solutions extend further than the building envelope. Issues of massing, aspect ratio, surface-to-volume ratio, orientation, and others, emerge from the analysis of solutions generated by the GDS, playing a significant role in dictating whether a given architectural form will prove adapted to its climatic and energy requirements. Results suggest that the questions raised by the exploration of form generation driven by environmental concerns are complex, deserving the pursuit of further experiments, in order to better understand the interaction of variables that the evolutionary process congregates.
keywords Generative Design System, Genetic Algorithms, Evolutionary Architecture, Artificial Intelligence in Design, Building Energy Simulation, Bioclimatic Architecture, Environmental Design.
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac20053403
id ijac20053403
authors Datta, Sambit; Beynon, David
year 2005
title A Computational Approach to the Reconstruction of Surface Geometry from Early Temple Superstructures
source International Journal of Architectural Computing vol. 3 - no. 4, 471-486
summary Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id 2005_245
id 2005_245
authors Lyon, Eduardo
year 2005
title Design for Manufacturing in Architecture
doi https://doi.org/10.52842/conf.ecaade.2005.245
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 245-252
summary This paper explores new ways to integrate manufacturing processes information in to design phases. Through the analysis of related fields and looking at the relations between its design methods and production processes, we analyze design processes and design representations that already have embedded in them specific ways to materialize through production the artifacts they define. Subsequently, we explore curved surface fabrication using cutting and bending technologies. As a summary, we conceptualize from this top-down development approach to design a framework that integrates design and construction in architecture, based on three possible applications fields: - Design processes improvement - Building production process improvement - CAD-CAM Tools development.
keywords Design Computing, Design Cognition, Digital Manufacturing
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2005_120
id sigradi2005_120
authors Lyon, Eduardo; Charles Eastman
year 2005
title Design for manufacturing in architecture: mapping between the design and fabrication of curved surfaces
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 120-125
summary This paper explores new ways to integrate manufacturing processes information in to design phases. Through the analysis of related fields and looking at the relations between its design methods and production processes, we analyze design processes and design representations that already have embedded in them specific ways to materialize through production the artifacts they define. Subsequently, we explore curved surface fabrication using cutting and bending technologies. As a summary, we conceptualize from this top-down development approach to design a framework that integrates design and construction in architecture, based on three possible applications fields: 1.) Design processes improvement; 2.) Building production process improvement; 3.) CAD-CAM Tools development. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2019_183
id caadria2019_183
authors Macken, Marian, Mulla, Sarosh and Paterson, Aaron
year 2019
title Inhabiting the Drawing - 1:1 in time and space
doi https://doi.org/10.52842/conf.caadria.2019.1.505
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 505-514
summary One of the fundamental characteristics of architectural drawing is its use of scale. Since the Renaissance - during which architectural production shifted from the construction site to paper - this scalar understanding began by using bodily measurements. In developing designs, the architect projects future occupation of the drawing with their eyes and hands moving over both its physical surface and represented space. The different relationship established between the digital drawer and the body has been criticised; Paul Emmons argues that CAD's full scale - or rather scale-less - capabilities omit this bodily presence of the drawer (Emmons, 2005). Due to the use of full scale data recording, the drawer zooms in and out to consider aspects, severing the drawing's relation to the operator's body. This paper explores ways in which the body and drawings intersect, beyond Emmons definition, and hence considers the influence of the method of drawing on perceptions of scale and the inhabitation of digital drawings. It uses ongoing collaborative research projects and exhibitions to explore the inhabitation of digital drawing at full scale. These works highlight the fundamental importance of the line within architecture, not as demarcation, divider or indexical reference, but as a traces of bodily projections.
keywords architectural drawing; architectural scale; full scale drawing; post factum documentation
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia05_192
id acadia05_192
authors Modeen, Th,, Pasquire, C. and Soar, R.
year 2005
title Design Ground - An Iconic Tactile Surface
doi https://doi.org/10.52842/conf.acadia.2005.192
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 192-199
summary This paper forms an intermediary summary of a project which aim is to suggest an alternate methodology for utilizing additive Rapid Manufacturing (an evolved rendition of Rapid Prototyping), for the conceptualization and fabrication of design and architecture. It plans to do so by establishing a methodology that is innate and a direct reflection of the additive RM production process. The project also aims to address the seemingly divisive discrepancy between the process of digitally conceiving a design and the intrinsically somatic way we perceive it. Such aims are explored through a surface design that is not predominantly guided by visually derived nodes but instead relies on a form of ‘tactile iconography’ as a means for expressing and amplifying various qualities and elements found in its vernacular. The resulting design would be very difficult, if not impossible, to make by any other means.
series ACADIA
email
last changed 2022/06/07 07:58

_id ijac20053203
id ijac20053203
authors Norman, Frederick
year 2005
title Digital to Analog: Exploring Digital Processes of Making
source International Journal of Architectural Computing vol. 3 - no. 2, 191-202
summary This focus this paper is the translation of a digital information model that defines an object's surface properties and its connection to that which is real or physical. This research, while early in its investigation, seeks to explore architecture and digital design as a material process. The direct connection to output devices such as computer-numerically controlled routers provide a unique opportunity for controlled variation and serial differentiation and seeks to exploit mass customization rather than standardization. Through a series of studies the process from design to machine file to finish product is explored. This connection to digitally driven fabrication equipment creates within the design process an opportunity to realize ones designs both digitally and materially.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia06_544
id acadia06_544
authors Schindler, C., Braach, M., Scheurer, F.
year 2006
title Inventioneering Architecture: building a doubly curved section through Switzerland
doi https://doi.org/10.52842/conf.acadia.2006.544
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 544-545
summary Inventioneering Architecture is an exhibition of the four Swiss architecture schools that has been traveling the world during 2005/06. This doubly curved exhibition platform, resembling an abstract crosscut through Swiss topography, measures 40 by 3 meters. The authors proposed to assemble the hilly platform from 1000 individually curved rafters that were milled out of 40mm medium density fiberboard (MDF). By implementing a continuous digital chain from the definition of the surface geometry in the CAD software Maya to the control of the five-axis CNC-mill that manufactures the parts, production costs could be lowered significantly. The detailing was developed closely after the capabilities of a five-axis router. The platform is divided into 40 mm wide cross sections, each describing the upper surface path of one rafter. The milling tool follows this path and rotates around it at the same time, cutting out a so called “ruled surface” that follows the topography of the platform both along and across the section. In order to meet the budget requirements, the crucial point was to automate the translation of the platform geometry into the geometry of the single parts and finally into the steering code (G-Code) for the computer controlled mill.
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia06_538
id acadia06_538
authors Senagala, Mahesh
year 2006
title Light Exchange
doi https://doi.org/10.52842/conf.acadia.2006.538
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 538-539
summary The notions of collaborative exchanges, leadership, and entrepreneurialism that cross disciplinary boundaries were promoted in a digital design-build studio taught in spring 2005. With the starting funds of one dollar, the studio took up the challenge of building two full-scale tensile fabric structures that mark the entrances to a downtown San Antonio building. Structures of 1200 square feet total surface area were successfully designed, engineered, and executed within a semester framework at a final cost of $102,490. Collaborations were fostered with 24 industry partners from Asia, Europe, Australia, and USA, including four structural engineers. Innovative pedagogical, collaborative and project management methods were employed. The studio was structured as a self-organized design “firm.” Positions were created and students were “hired” into the firm to play different roles. The studio utilized web-based communication and project management tools. After a four-week warm-up project that established an innovative studio culture, professional schedules were prepared and the engineers were engaged in the collaborative process of designing the anchors, cables, connections and PTFE/PVC membranes. The peculiarities of digitally designing, fabricating and erecting tensile fabric structures were comprehensively explored. The studio completed all the CNC fabrication, concrete footings and membrane fabrication at local workshops through special partnerships.
series ACADIA
email
last changed 2022/06/07 07:56

_id cf2005_1_71_148
id cf2005_1_71_148
authors STREHLKE Kai and LOVERIDGE Russell
year 2005
title The Redefinition of Ornament
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 373-382
summary Architectural ornament, the art of decorative patterning, is commonly perceived as an historical characteristic which declined in the beginning of the 20th century. The lecture of Adolf Loos in 1908 “Ornament and Crime” can certainly be seen as a crucial contribution in the architectural discussion about the exclusion of ornament. Although the modernist emphasis on unadorned form, the upcoming international style and the replacement of craftsmanship by the rise of mass production yielded to a systematic elimination of ornament, we are experiencing its revival in contemporary architecture through experiments using digital technologies. This paper describes our ongoing research and teaching activities in the field of architectural ornamentation, surface modeling and texturing, as well as the related CNC manufacturing processes.
keywords 3D modeling, parametric design, image processing, design education, CAM
series CAAD Futures
email
last changed 2006/11/07 07:27

_id sigradi2005_427
id sigradi2005_427
authors Tannuré, Abel E.
year 2005
title Shadow and digital system: digital techniques and architecture
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 427-432
summary The system proposes to apply the results of the investigation in the task of architecture de-structurizing the idea in order to free the capacity of thought. One works in a three-dimensional way with models built, using discarded material. It is processed by means of digital media, giving a series of images which have been selected. One uses on them different systems of lighting changing the number of lights, the position in space and the distances. Like that one obtains different shadows on a surface; those shadows work in similar form with “eyes” of possible architectural forms. They are digitally processed according to the desired objectives. Several of them are combined adding and removing elements, which makes them dynamic in time. This technique tries to develop a new tool for students who may find the idea spontaneously, with the freedom of thought in three-dimensions like a new form of looking at architecture. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 10:01

_id acadia06_546
id acadia06_546
authors Williamson, Shane
year 2006
title Stock Space
doi https://doi.org/10.52842/conf.acadia.2006.546
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 546-547
summary Modest in budget and ephemeral in nature, STOCK SPACE was installed, exhibited, and dismantled over a five-day period at the Toronto National Trade Center as part of an invited exhibition of concept spaces at the 2005 Toronto Interior Design Show. Occupying 450 square feet within an 110,000-square-foot convention center, STOCK SPACE was small, vertical, warm, and quiet, in contrast to the immense horizontality of the mechanically cooled trade floor of nearly 40,000 exhibitors and attendees. STOCK SPACE was an investigation of limits. Material had to fit through doors and on our CNC milling bed. It had to clear staircases, be carried by hand, and be stored compactly within the confines of our fabrication area. STOCK SPACE was an exercise in subtraction. The space was created through the removal of stock material from a conceptually full volume that measured 24’ long x 18’ wide x 12’ tall. High density EPS foam in 4’x 8’ x 16” modules provided a light and machinable medium capable of recording the vestigial marks of fabrication as well as providing adequate dampening and insulation. The resulting assemblage of stacked modules embodied traits of the orthographic grid associated with the length and width of the stock, the topographic contours associated with the depth of the stock and the isoparametric grooves of the resulting surface. The collective composition of these elements was the analytical result of maximum machining curvature.
series ACADIA
email
last changed 2022/06/07 07:57

_id ecaade2024_230
id ecaade2024_230
authors Fekar, Hugo; Novák, Jan; Míèa, Jakub; Žigmundová, Viktória; Suleimanova, Diana; Tsikoliya, Shota; Vasko, Imrich
year 2024
title Fabrication with Residual Wood through Scanning Optimization and Robotic Milling
doi https://doi.org/10.52842/conf.ecaade.2024.1.025
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 25–34
summary The project deals with the use of residual wood of tree stumps and roots through scanning, optimization and robotic milling. Wood logging residue makes up to 50 percent of the trees harvested biomass. (Hakkila and Parikka 2002). Among prevailing strategies is leaving residue on site, and recovering residue for bioenergy. (Perlack and others 2005). The project explores the third strategy, using parts of the logging residue for fabrication, which may reduce the overall amount of wood logging volume. Furthermore approach aims for applying residue in its natural form and taking advantage of specific local characteristics of wood (Desch and Dinwoodie 1996). The project applies the strategy on working with stump and roots of an oak tree. Due to considerations of scale, available milling technics and available resources, chosen goal of the approach is to create a functioning chair prototype. Among the problems of the approach is the complex shape of the residue, uneven quality of wood, varying humidity and contamination with soil. After cleaning and drying, the stump is scanned and a 3D model is created. The 3D model od a stump is confronted with a 3D modelled limits of the goal typology (height, width, length, sitting surface area and overal volume of a chair) and topological optimization algorithm is used to iteratively reach the desired geometry. Unlike in established topological optimization proces, which aims for a minimal volume, the project attempts to achieve required qualities with removing minimal amount of wood. Due to geometric complexity of both stump and goal object, milling with an 6axis industrial robotic arm and a rotary table was chosen as a fabrication method. The object was clamped to the board (then connected to a rotary table) in order to provide precise location and orientation in 3D space. The milling of the object was divided in two parts, with the seating area milled in higher detail. Overall process of working with a residual wood that has potential to be both effective and present aesthetic quality based on individual characteristics of wood. Further development can integrate a generative tool which would streamline the design and fabrication proces further.
keywords Robotic arm milling, Scanning, Residual wood
series eCAADe
email
last changed 2024/11/17 22:05

_id sigradi2005_144
id sigradi2005_144
authors Goldberg, Sergio Araya
year 2005
title ICHTYOMORPH - Design and development of a fish-skin double façade system for freeform super tall buildings using Parametric Design Tools
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 144-149
summary Parametric design implies a whole new paradigm of non standard design through the propagation of the difference, the repetition of variation. The ability to control variation and adaptation to local conditions allows more precise yet complex designs. This paper describes a research project designing double skin façade systems for tall buildings using a parametric approach. These designs are tested later through rapid prototyping techniques. This research aims its design towards an adjustable façade structure, articulated according to various complex geometrical conditions on the façade of a building. The skin is conceived as a light, flexible, reconfigurable composition responding to different criteria regarding the design, its environment or the program. It achieves this through different levels of control on different scales of the project, by embedding several layers of parametric features, which are nested one inside the other, in order to produce the overall rainscreen surface of the tower.
series SIGRADI
email
last changed 2016/03/10 09:52

_id cf2005_1_61_209
id cf2005_1_61_209
authors LEE Chia-Hsun, HU Yuchang and SELKER Ted
year 2005
title iSphere: A Proximity-based 3D Input Interface
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 281-290
summary This paper presents a 24 degree of freedom input device for 3D modeling. iSphere uses the proximity information of pulling-out and pressing-in capacitive sensors to manipulate 12 control points of a 3D surface simultaneously . The iSphere dodecahedron is demonstrated manipulating an analog parametric model with high-level modeling concepts like push or pull the 3D surfaces. Our pilot experiment shows that iSphere saved many steps of selecting the control point and going through menus. Experts were used to those extra steps and still found themselves doing them but novices saved significant time for surface shaping tasks. 3D systems are benefited to execute high-level modeling commands, but lacking of fidelity is a great issue of analog input device.
keywords 3D input device, proximity sensing, parametric modeling, human-computer interaction
series CAAD Futures
email
last changed 2006/11/07 07:27

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_760576 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002