CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 514

_id sigradi2005_000
id sigradi2005_000
authors Angulo, Antonieta and Vásquez de Velasco, Guillermo (eds.)
year 2005
title SiGradi2005: Vision and Visualization
source Proceedings of the 9th Iberoamerican Congress of Digital Graphics Graphics / ISBN 978-1-59975-306-5] Lima (Perú) 21-23 november 2005, 826 p.
summary Paradoxically, one of the most difficult but enjoyable things we do is to imagine. To open the eyes of our mind and see what no one else can see. We see images of things that are yet to be and through the same skill we devise ways in which to make them happen. We design the future in the form of environments, graphics, products, films, and a growing range of new media. Our ability to develop a vision and to visualize it is a gift that we are called to cultivate and put to good use. We have been privileged with a great responsibility. In the process of developing a vision and communicating that vision to others, we “visualize”. Visualization can be a very private experience in which we are alone with mental images that help us shape our vision. In other instances visualization can be a component of mass communication. Visualization can be a means or can be an end. It can be a small architectural sketch on a paper napkin or a mega-graphic covering a high-rise building, an airplane or a ship. In every case, the relationship between vision and visualization is a mutually supportive articulation of what our eyes and our minds can see. Our vision of the role of computers in the art and science of visualization is in constant development. Computer visualization can support an intimate dialog between a designer and his/her vision. It can translate and communicate that vision to a larger audience and in the hands of a new-media artist it can actually constitute his/her vision. The 9th Annual Conference of SIGraDI (Ibero American Society for Computer Graphics) will explore our collective vision on the future of digital visualization and digital media in Environmental Design, Product Design, Graphic Design, Cinematography, New Media, and Art. Authors are invited to share their research work with a focus on how it contributes to shape a collective understanding of the past, awareness of the present, and vision of the future in our multiple disciplines.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 2005_269
id 2005_269
authors Caldas, Luisa and Duarte, José
year 2005
title Fabricating Ceramic Covers
doi https://doi.org/10.52842/conf.ecaade.2005.269
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 269-276
summary This paper describes a studio experiment developed with the aim of exploring the design and fabrication of innovative roof systems based on ceramic tiles using digital technologies. History is rich in examples of the use of ceramic roof tiles since the ancient world. Today’s systems derive from such ancient systems and fall into several basic categories depending on the form of the tiles and how they interlock. These systems present acceptable functional performances due to centuries of refinement, but as they have suffered little formal evolution in recent centuries, to respond to modern needs they require complex layering and assemblies. Recent technological evolution has emphasized the optimization of the tile production process in terms of time saving and cost reduction, and the improvement of product quality in terms of material homogeneity and durability. Little attention has been paid to the tile form and the roof system as a whole, including the assembly process. As a result, despite the variety and performance of existing designs, they are often perceived as outdated by architects who refuse to use them following a stylistic trend in architectural design towards primary forms and flat roofs. The challenge of the experiment was to take advantage of digital design and fabrication technology to conceive systems with improved performance and contemporary designs. The hope was that this could lead architects to consider integrating roof tiles systems in their architectural proposals. Results yielded five different roof systems. These systems are innovative from a formal viewpoint both at the tile and roof level. In addition, they are easy to assemble and possess better thermal and water-proofing performance. Digital technologies were determinant to enable students to design the complex shape of the tiles, to manipulate them into assemblies, and to assess the shape of the roofs, as well as their thermal and structural performance in some cases.
keywords Design Education; Rapid Prototyping; Collaboration; Ceramics; Innovation; Tiles
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2005_303
id 2005_303
authors Clark, Steve and Maher, Mary Lou
year 2005
title Learning and Designing in a Virtual Place
doi https://doi.org/10.52842/conf.ecaade.2005.303
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 303-309
summary This paper reports on a study of the role of place in a virtual learning environment for digital media design. Using an immersive 3D Virtual World based on Active Worlds, we have created a virtual learning place for students in a Website Design course. The virtual learning place has two distinct parts: a classroom-like place surrounded by student galleries. Students can navigate and communicate (synchronous chat) within the environment in the form of an avatar (virtual person). We recorded the conversations and activities of the students in discussions held in the virtual learning place and applied a communication coding scheme to analyze their discussions. In this paper we present our approach to developing an understanding of the role of place and evidence of its effect on the conversations of design students in a virtual learning environment. We show how we identified the characteristics of place and specifically how it provides a context for identity and presence for supporting collaborative and constructivist student centred learning.
keywords Virtual Learning Environments, Place, Virtual Design Studios
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2016_002
id ascaad2016_002
authors Jabi, Wassim
year 2016
title Rigorous Creativity - Ubiquity, Parametrics, Tectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 3-6
summary Architects frequently understand and experience design and creativity as a personal and lonely activity. However, there is, increasingly, a need to collaborate with others in the design and construction of buildings. Digital technology is intricately intertwined with the creative and social aspects of the emerging practice world. A prime example is the use of digital fabrication technology and building information models to directly transfer information among architects, contractors, fabricators and consultants. At the same time, the discipline and practice of creative design is increasingly seen as a valuable cognitive skill, to be emulated, tapped, and understood by other disciplines in various settings. Fields outside of architecture and governmental granting agencies have shown strong interest in understanding, rationalizing and importing the creative design process that architects engage in. The obstacle, however, has been that architects and designers are rarely able to explain their processes in a manner understood by others. The advent of digital tools and social computing further complicates the issues of how designers design with such tools and how designers design with others (Lawson, 2005). Our aim should be to define a discipline of collaborative digital design with clear conceptual frameworks, methodologies, and epistemologies. The goal is two-fold: 1) to formulate a discipline of digital design based on sound theoretical and pragmatic underpinnings, and 2) to elucidate the processes of digital design so that we can better communicate them to other disciplines and thus engage more effectively in interdisciplinary research.
series ASCAAD
email
last changed 2017/05/25 13:13

_id sigradi2005_714
id sigradi2005_714
authors Klinger, Kevin R.
year 2005
title Augmented Vision: Digital Devices and Post-processing for Experiential Learning
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 714-719
summary Today, digital devices and post-processing provide for rich mediated observations of places. When we observe the natural world through a digital lens, it alters perception and augments our understanding. Digital devices affect the observing reality through a bias of digital laws, thus participating by revealing layers of information concealed within the captured scene. This paper outlines strategies for digitally augmenting our innate powers of observation and facilitating critical experiential learning through digital visual notation. Digitally augmented observation techniques were tested during student and professor related travel/study with Ball State University. Examples of time-based motion capture such as serial digital photography, post processed image manipulation, and digital video/still collage with multimedia narrative will be used to illustrate how digitally enhanced augmented vision techniques render observation of the everyday world in new terms. Additionally, the paper points to a trajectory for future digital notes scholarship by examining the potential for innovative new pedagogies, and situating the discourse in relation to an existing body of scholarship on traditional visual notes.
series SIGRADI
email
last changed 2016/03/10 09:54

_id 2005_433
id 2005_433
authors Lang, Silke Berit
year 2005
title Designing Tele Reality Using Media and Communication Technologies
doi https://doi.org/10.52842/conf.ecaade.2005.433
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 433-440
summary In this paper we describe the use of media and communication technologies with a special notification on video systems for the design of a technological enhanced environment. We make suggestions how architects can design environments that are more flexible and dynamic. These environments are adapted to our changing social and cultural trends. Developments in media and communication technologies allow extending the real world to a so called Tele Reality. These environments will have a certain degree of intelligence provided via computer performance. Humans will be able to receive information form anywhere and at anytime. The focus is on expanding the availability of human resources.
keywords Media and Communication Technologies; Tele Reality; Video Systems, Design Principles
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2005_304
id sigradi2005_304
authors Marques, Sandra; Jean-Pierre Goulette
year 2005
title Architectural visions and mediations of cyberspace
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 304-309
summary The use and evolution of Information and Communication Technologies is widening not only the process of communicating architecture but also it is challenging what we design and also how we design. These technologies became infrastructures in a world that has acquired a digital or virtual layer that are affecting not only the professional practices of designers, but also, and more generally, our collective vision of spatiality and the way we communicate it. In order to adjust itself to this increasingly volatile world, architecture is recasting its boundaries, its essential codes and tools. This paper focuses on the application of these ideas into the theoretical and methodological structure of an undergraduate course held in the context of an international Virtual Design Studio between a French and a Canada school of architecture which general objective is to explore the associations between Forme, Information, Novation and Conception by designing Virtual Architectures (FINC-AV).
series SIGRADI
email
last changed 2016/03/10 09:55

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2005_010
id 2005_010
authors Aish, Robert
year 2005
title From Intuition to Precision
doi https://doi.org/10.52842/conf.ecaade.2005.010
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 10-14
summary Design has been described as making inspire decisions with incomplete information. True, we may use prior knowledge, we may even think we understand the causalites involved, but what really matters is exploration: of new forms, of new materials, and speculation about the response to the resulting effects. Essentially, this exploration has its own dynamics, involving intuition and spontaneity, and without which there is no design. But of course we all know that this is not the whole story. Design is different to 'craft'; to directly 'making' or 'doing'. It necessarily has to be predictive in order to anticipate what the consequence of the 'making' or 'doing' will be. Therefore we inevitably have to counter balance our intuition with a well developed sense of premeditation. We have to be able to reason about future events, about the consequence of something that has not yet being made. There is always going to be an advantage if this reasoning can be achieved with a degree of precision. So how can we progress from intuition to precision? What abstractions can we use to represent, externalize and test the concepts involved? How can we augment the cognitive processes? How can we record the progression of ideas? And, how do we know when we have arrived? Design has a symbiotic relationship with geometry. There are many design issues that are independent of any specific configurations. We might call these “pre-geometric” issues. And having arrived at a particular configuration, there may be many material interpretations of the same geometry. We might call these “post-geometric” issues. But geometry is central to design, and without appropriate geometric understanding, the resulting design will be limited. Geometry has two distinct components, one is a formal descriptive system and the other is a process of subjective evaluation.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2005_673
id sigradi2005_673
authors Amorim, Arivaldo Leão de; Daniel Chudak
year 2005
title Digital Historic Heritage: documenting of Pelourinho, Salvador - Bahia, Brazil, with 3D laser scanning technology
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 673-678
summary This paper describes the Pelourinho Project realized past July in Salvador, during the 1st International Conference on 3D Laser Scanning for Heritage Documentation. The Pelourinho located at the historic center of Salvador, is an impressive wide set of buildings listed by UNESCO as World Heritage. The text contains a quickly overview about the 3D laser scanning technology, shows how data are captured and what they stored and what they means. The 3D laser scanning model, another kind of 3D geometric model is called point cloud and represents an excellent way to store data of some particular constructions. Because its irregular shapes it is very arduous to survey and represent these constructions by any other method. The point cloud model is an excellent way to represent with integrity and accuracy these particular complex shapes like the colonial baroque churches in Brazil. [Full paper in Portuguese]
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia05_012
id acadia05_012
authors Anshuman, Sachin
year 2005
title Responsiveness and Social Expression; Seeking Human Embodiment in Intelligent Façades
doi https://doi.org/10.52842/conf.acadia.2005.012
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 12-23
summary This paper is based on a comparative analysis of some twenty-six intelligent building facades and sixteen large media-facades from a socio-psychological perspective. It is not difficult to observe how deployment of computational technologies have engendered new possibilities for architectural production to which surface-centeredness lies at that heart of spatial production during design, fabrication and envelope automation processes. While surfaces play a critical role in contemporary social production (information display, communication and interaction), it is important to understand how the relationships between augmented building surfaces and its subjects unfold. We target double-skin automated facades as a distinct field within building-services and automation industry, and discuss how the developments within this area are over-occupied with seamless climate control and energy efficiency themes, resulting into socially inert mechanical membranes. Our thesis is that at the core of the development of automated façade lies the industrial automation attitude that renders the eventual product socially less engaging and machinic. We illustrate examples of interactive media-façades to demonstrate how architects and interaction designers have used similar technology to turn building surfaces into socially engaging architectural elements. We seek opportunities to extend performative aspects of otherwise function driven double-skin façades for public expression, informal social engagement and context embodiment. Towards the end of the paper, we propose a conceptual model as a possible method to address the emergent issues. Through this paper we intend to bring forth emergent concerns to designing building membrane where technology and performance are addressed through a broader cultural position, establishing a continual dialogue between the surface, function and its larger human context.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2005_163
id 2005_163
authors Balakrishnan, Bimal, Kalisperis, Loukas N. and Muramoto, Katsuhiko
year 2005
title Evaluating Workflow and Modeling Strategies of Pen Computing in the Beginning Architectural Design Studio
doi https://doi.org/10.52842/conf.ecaade.2005.163
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 163-170
summary This paper investigates the impact of Tablet PCs on the workflow in an undergraduate design studio. We examined how well the students adapted the Tablet PC into their day-to-day design work and evaluated the appropriateness of the Tablet PC as a common digital tool used in an architectural design studio. This research involved observation of student behavior during the semester and the conducting of a survey measuring various aspects of the students’ use of the computers. A more specific goal was to compare the effectiveness of the pen versus the mouse as input devices for a three-dimensional modeling task in terms of both task time and strategies. Our assumption was that a change in input mode would affect the strategies and the performance. The results of a within-subjects, repeated-measures experiment carried out to elicit differences in input devices are discussed.
keywords Digital Design Education; Human-Computer Interaction; 3D Modeling; Pen Computing; Task Analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id ad19
id ad19
authors Calderon, C., and Noble, R
year 2005
title BEYOND MODELLING: AVANT-GARDE COMPUTER TECHNIQUES IN RESIDENTIAL BUILDINGS.
source I Jornadas de Investigacion en Construccion, Madrid, 2-4 June, 2005.
summary If the result of computer innovations can be interpreted as an emerging “difference” in the quality of constructed space, then in order to truly understand what future applications may be regarding architecture at present, we should look at what advanced functions are available in the process of designing forms and space (DeLuca and Nardini, 2002). Recently the so called parametric approach, a technique for describing a large class of designs with a small description in programming code, has become a focus of attention in architectural computing. In this paper, we reflect on the current use of parametric tools using real case studies as well as our own proof of concept parametric programmes and report on how the avant-garde computer techniques may help to increase the quality of residential building.
keywords Building Quality, Parametric Design
series other
type normal paper
email
last changed 2005/12/02 11:42

_id acadia05_058
id acadia05_058
authors Daveiga, José and Ferreira, Paulo
year 2005
title Smart and Nano Materials in Architecture
doi https://doi.org/10.52842/conf.acadia.2005.058
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 58-67
summary We describe and analyze the fields of Smart and Nano Materials and their potential impact on architectural design and building fabrication. Distinguishing Smart and Nano materials, Smart Materials perform both sensing and actuating operations, whereas many Nano materials are capable of self-assembly. In general, Smart and Nano materials can perform like living systems, simulating human skin, the body’s muscles, a leaf’s chlorophyll and self-regeneration. Recognizing that the traditional partition between Materials Science and Architecture is obsolete, our intent is to show how these two fields are intrinsically connected, while growing evermore symbiotic as we progress into the futureKeeping the designer in mind, our paper begins with the question: “What Nano and Smart materials can be used in future architectural designs?” Outlining what such materials might mean for architectural fabrication and design, we claim that Smart and Nano Materials can imitate living organisms. Effective implementation of these materials will therefore allow designed spaces to operate as active organs within a larger dynamic organism, synthesizing both expressive intent and pragmatic considerations. This paper is a collaboration between an architect and a materials scientist on the future of materials and their influence in architecture. By giving examples of work already underway we intend to illustrate and suggest directions ranging from the functional to the expressive, from tectonics to morphology. We conclude with a reflection on the importance of future research between our two areas of knowledge.
series ACADIA
email
last changed 2022/06/07 07:55

_id ijac20053305
id ijac20053305
authors de Almeida, Clarissa Ribeiro Pereira; Pratschke, Anja; La Rocca, Renata
year 2005
title In-between and Through:Architecture and Complexity
source International Journal of Architectural Computing vol. 3 - no. 3, 335-354
summary This paper draws on current research on complexity and design process in architecture and offers a proposal for how architects might bring complex thought to bear on the understanding of design process as a complex system, to understand architecture as a way of organizing events, and of organizing interaction. Our intention is to explore the hypothesis that the basic characteristics of complex systems – emergence, nonlinearity, self-organization, hologramaticity, and so forth – can function as effective tools for conceptualization that can usefully extend the understanding of the way architects think and act throughout the design process. To illustrate the discussions, we show how architects might bring complex thought inside a transdisciplinary design process by using models such as software engineering diagrams, and three-dimensional modeling network environments such as media to integrate, connect and 'trans–act'.
series journal
more http://www.ingentaconnect.com/search/expand?pub=infobike://mscp/ijac/2005/00000003/00000003/art00006
last changed 2007/03/04 07:08

_id sigradi2005_270
id sigradi2005_270
authors Dokonal, Wolfgang; Michael W. Knight
year 2005
title Sketch as sketch can or model as model can?
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 270-274
summary This paper reports about an ongoing experience for the use of computers in the early design stages. It tries to evaluate how recent software developments in the field of CAAD will influence the way architects design and how we teach them architectural design. There is now doubt to us that the ongoing change in the technology will influence the way we work in future when we do architectural design. It is an important question for every school of architecture what effect these developments will have on our teaching and curricula. We use an ongoing educational project to try to find some answers to these questions.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 2005_547
id 2005_547
authors Elger, Dietrich and Russell, Peter
year 2005
title Crisis? What Crisis?
doi https://doi.org/10.52842/conf.ecaade.2005.547
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 547-556
summary The paper describes the current situation concerning career opportunities in the field of architecture in developed western countries. Several aspects that are almost universal mark this situation. Firstly, there are too many architects chasing traditional work in competition with structural (civil) engineers. This is not surprising in consideration of the fact, that the architectural education industry produces far too many new architects for the economy to absorb. In Germany, the number is almost three times too many. Secondly, the needs of the building industry have changed over the past twenty years so that the skills that architects want to offer are not necessarily those that are sought. Lastly, the constant specialisation of work has continued unabated. Architects, as generalists, have idly watched their areas of expertise be usurped from neighbouring fields like civil and structural engineering The reasons for this crisis are manifold. In the schools of architecture, the discussions often deal with form or formal arguments, which, in fact, have little or no relevance to the building industry. This position was tenable so long as the clients were willing to accept formal arguments in order to receive buildings of high quality or current social relevance (i.e. current architectural fashion). With the dual aspects of globalisation and a shift to maintaining building stocks rather than producing new buildings, the tolerance for “architectural” discussions has been reduced even further. Indeed, the monetary pressures overwhelm almost all other aspects, including so-called green issues. What is more, most of the monetary issues are time based. Time represents, perhaps, the largest pressure in any current planning project. The clients expect expedient, accurate and inexpensive solutions. If architects are not able to produce these, the clients will (and do) go elsewhere. The authors argue that there remain serious problems to be solved for architects and the metier in general. Ever cheaper, ever faster and ever encompassing information technologies offer the architectural community a chance to turn recent trends on their head. By using information technologies to their full potential, architects can reassert themselves as the coordinators of building information and processes. Simply put, this means less photorealistic rendering and more databases, which may be unappealing for those architects who have positioned themselves as “designers” and are able to talk long on form, but short on cost or logistics. Nonetheless, the situation is not lost, so long as architects are able to recognise what is desired from the point of view of the client and what is desired from the point of view of the architect. It is not a question of one or the other. Architects must be able to offer innovative design solutions that not only address the fiscal, legal and programmatic constraints, but also push the boundaries at to the position of architecture in the community at large. For educators, it must be made clear that the real potential architects possess is their encompassing knowledge of the building process including their expertise concerning questions of architectural form, function, history and art. Precisely while they are generalists are architects invaluable in a sea of specialists. The biggest hurdle to asserting this in the past has been the control of the vast amounts of information. This is no longer a problem and also no longer an excuse. In the education of architects, it must be made clear that their role dictates sovereignty over architectural information. Architectural Information Management is a necessary skill alongside the more traditional architectural skills. A brief outlook as to how this might come about is detailed in the paper. The authors propose didactic steps to achieve this. Primarily, the education of computer supported planning should not simply end with a series of lectures or seminars, but culminate in integrated Design Studios (which including Design-Build scenarios).
keywords Architectural Information Mangement, Computer Supported Design Studios, CSCW
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2005_1_42_119
id cf2005_1_42_119
authors IORDANOVA Ivanka and TIDAFI Temy
year 2005
title Using Historical Know-how to Model Design References
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 197-206
summary The main purpose of this paper is to demonstrate that new computer and communication technology has the potential to change architectural education in a positive way, based on previous experiences and learning from the past. This research is based on two historical aspects that we bring together in order to propose a new didactic method and material for architectural education: the first one consists in finding obsolete architectural training practices and reconsidering them from a modern point of view; the second one proposes using precedents in a new constructive way in situation of teaching architectural conception in studio. This historical approach, combined with architectural design studio observations, has lead to an outline of a prototype of a digital assistant for teaching architectural design. Some aspects of its functioning are here discussed.
keywords architectural education, reference modeling, digital design studio
series CAAD Futures
email
last changed 2006/11/07 07:27

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_593040 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002