CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 62

_id 2005_491
id 2005_491
authors Beirão, José and Duarte, José
year 2005
title Urban Grammars: Towards Flexible Urban Design
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 491-500
doi https://doi.org/10.52842/conf.ecaade.2005.491
summary Traditional urban plans have definitive design systems, without the flexibility required to deal with the complexity and change that characterise contemporary urban societies. To provide urban plans with increased flexibility, it is proposed a design methodology capable of producing various design solutions instead of a specific definitive design. The methodology uses shape grammars as a process for generating urban design. In this approach, design becomes a system of solutions rather than a specific one. Through the analyses of a group of urban plans, a design methodology was sketched in which rules are used to enable more flexibility. These plans where chosen for their perceived qualities in terms of language, planning efficiency, and latent flexibility. As a result, a four-phased methodology was identified and thus, proposed for designing urban plans. This methodology was then combined with shape grammars and tested in a design studio setting. Students were asked to use the methodology and shape grammars as auxiliary instruments in the design of a flexible plan for a new town. In the following year, to simulate real-world conditions and oblige students to consider urban ordering and scale, work was structured differently. First, students were asked to develop a rule-based urban plan as in the previous year. Second, they were asked to conceive a detail plan for a sector of an urban plan defined by another group of students following its rules. The plans were then analysed with the goal of refining the methodology. Results show that shape grammars produce urban plans with non-definitive formal solutions, while keeping a consistent spatial language. They also provide plans with explicit and implicit flexibility, thereby giving future designers a wider degree of freedom. Finally, they provide students with a concrete methodology for approaching urban design and foster the development of additional designing skills.
keywords Shape Grammars, Flexible Urban Design
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2007_585
id caadria2007_585
authors Menegotto, José Luis
year 2007
title The Nazca Lines and their Digital Architectural Representation
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.r9m
summary This paper relates to a digital architectural design experience in 2005 for the Nazca Competition. Nazca is an archaeological site situated about 400 kilometers south of Lima, Peru. It is a large desert with gigantic millenary geoglyphs carved on the surface, which can only be seen clearly from above. The Nazca geoglyphs are made up of hundreds of lines, spirals and triangular plazas, as well as zoomorphic figures like birds, fish, spider, etc. The Nazca Competition asked for an observatory-lodge of approximately 1.000m2 with 20 rooms, communal bathrooms, supporting areas and an observatory tower of at least 100 meters. The observatory-lodge was designed using a digital representation technique called "Genetically Constructed Structures". The structure was created using the geometric principle of the affinity of two conic sections: circle and ellipse. The form was produced transforming the circle and the ellipse by performing basic geometric transformations (translation, rotation, reflection and scaling). According to this technique, the sequence of transformations was codified in the form of an alphanumerical string, metaphorically named the "DNA structure". The code was inserted as extended data into the entities which shaped the structure profiles. The algorithms were programmed with AutoLISP language. The "DNA code" allowed the structure to be constructed and deconstructed from any point, generating many different forms, to be studied and compared. One year later, the same 3D model was used to test another digital technology called "musical box" where their geometrical points are captured, read and translated into musical parameters, generating music. In this paper we will present the graphical form of the tower as well as the music associated.
series CAADRIA
last changed 2022/06/07 07:50

_id 2005_010
id 2005_010
authors Aish, Robert
year 2005
title From Intuition to Precision
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 10-14
doi https://doi.org/10.52842/conf.ecaade.2005.010
summary Design has been described as making inspire decisions with incomplete information. True, we may use prior knowledge, we may even think we understand the causalites involved, but what really matters is exploration: of new forms, of new materials, and speculation about the response to the resulting effects. Essentially, this exploration has its own dynamics, involving intuition and spontaneity, and without which there is no design. But of course we all know that this is not the whole story. Design is different to 'craft'; to directly 'making' or 'doing'. It necessarily has to be predictive in order to anticipate what the consequence of the 'making' or 'doing' will be. Therefore we inevitably have to counter balance our intuition with a well developed sense of premeditation. We have to be able to reason about future events, about the consequence of something that has not yet being made. There is always going to be an advantage if this reasoning can be achieved with a degree of precision. So how can we progress from intuition to precision? What abstractions can we use to represent, externalize and test the concepts involved? How can we augment the cognitive processes? How can we record the progression of ideas? And, how do we know when we have arrived? Design has a symbiotic relationship with geometry. There are many design issues that are independent of any specific configurations. We might call these “pre-geometric” issues. And having arrived at a particular configuration, there may be many material interpretations of the same geometry. We might call these “post-geometric” issues. But geometry is central to design, and without appropriate geometric understanding, the resulting design will be limited. Geometry has two distinct components, one is a formal descriptive system and the other is a process of subjective evaluation.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2005_000
id sigradi2005_000
authors Angulo, Antonieta and Vásquez de Velasco, Guillermo (eds.)
year 2005
title SiGradi2005: Vision and Visualization
source Proceedings of the 9th Iberoamerican Congress of Digital Graphics Graphics / ISBN 978-1-59975-306-5] Lima (Perú) 21-23 november 2005, 826 p.
summary Paradoxically, one of the most difficult but enjoyable things we do is to imagine. To open the eyes of our mind and see what no one else can see. We see images of things that are yet to be and through the same skill we devise ways in which to make them happen. We design the future in the form of environments, graphics, products, films, and a growing range of new media. Our ability to develop a vision and to visualize it is a gift that we are called to cultivate and put to good use. We have been privileged with a great responsibility. In the process of developing a vision and communicating that vision to others, we “visualize”. Visualization can be a very private experience in which we are alone with mental images that help us shape our vision. In other instances visualization can be a component of mass communication. Visualization can be a means or can be an end. It can be a small architectural sketch on a paper napkin or a mega-graphic covering a high-rise building, an airplane or a ship. In every case, the relationship between vision and visualization is a mutually supportive articulation of what our eyes and our minds can see. Our vision of the role of computers in the art and science of visualization is in constant development. Computer visualization can support an intimate dialog between a designer and his/her vision. It can translate and communicate that vision to a larger audience and in the hands of a new-media artist it can actually constitute his/her vision. The 9th Annual Conference of SIGraDI (Ibero American Society for Computer Graphics) will explore our collective vision on the future of digital visualization and digital media in Environmental Design, Product Design, Graphic Design, Cinematography, New Media, and Art. Authors are invited to share their research work with a focus on how it contributes to shape a collective understanding of the past, awareness of the present, and vision of the future in our multiple disciplines.
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2005_511
id sigradi2005_511
authors Barrow, Larry R.
year 2005
title Man and machine: ideation and Making
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 511-516
summary The realization of architecture, that is the building of the physical artifact, requires numerous collaborative participates that requires a communication network in order to realize the vision. All efforts to communicate a design idea prior to physical realization, that is manufacturing or construction, are forms of visualization (i.e. representation). Herein lies the fundamental problem, the designer(s) must en-vision, and communicate that which is to BE ... physical, yet is NOT... physical. In this paper, we will review the emerging Human-Computer-Interface and technology influences on process and product; here we find the “humanistic” component is a critical factor in the success of “digital” strategies.
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2005_720
id sigradi2005_720
authors Bermudez, Julio; Jim Agutter
year 2005
title Data Architecture Studio: Premises, Pedagogy, and Results
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 720-724
summary Information Visualization (InfoVis) is the field devoted to the study of methods for displaying data in information-rich domains. Although most of the InfoVis solutions have been developed by scientists and engineers, artists and designers have began to bring in their expertise to advance the state of the art. The role that architects may play in this development could be substantial. Yet, participating in this new design frontier means to master skills and knowledge not necessarily covered by traditional architectural education. This paper presents a four-year effort devoted to develop such InfoVis curricula in an architectural context. The course encodes knowledge harvested over almost 10 year of InfoVis research bridging 5 disciplines and delivering many successful academic, technological, and commercial products. In particular, the class investigates the use of architecture as (1) a fundamental data organizational device and (2) a research method of examination, response, and communication for InfoVis problems.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2011_122
id ecaade2011_122
authors Chronis, Angelos; Jagannath, Prarthana; Siskou, Vasiliki Aikaterini; Jones, Jonathan
year 2011
title Sensing digital co-presence and digital identity: Visualizing the Bluetooth landscape of the City of Bath
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.87-92
doi https://doi.org/10.52842/conf.ecaade.2011.087
wos WOS:000335665500009
summary The impact of ubiquitous digital technologies on the analysis and synthesis of our urban environment is undoubtedly great. The urban topography is overlaid by an invisible, yet very tangible digital topography that is increasingly affecting our urban life. As W. J. Mitchell (Mitchell 2005) pointed out, the digital revolution has filled our world with “electronic instruments of displacement” that “embed the virtual in the physical, and weave it seamlessly into daily urban life”. The mobile phone, the most integrated mobile device is closely related to the notion of a digital identity, our personal identity on this digital space. The Bluetooth is the mainly used direct communication protocol between mobile phones today and in this scope, each device has its own unique ID, its “MAC address”. This paper investigates the potential use of recording and analysing Bluetooth enabled devices in the urban scale in understanding the interrelation between the physical and the digital topographies.
keywords Pervasive systems; digital presence; urban encounter; digital identity
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia05_078
id acadia05_078
authors Fox, Michael and Hu, Catherine
year 2005
title Starting From The Micro: A Pedagogical Approach to Designing Interactive Architecture
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 78-93
doi https://doi.org/10.52842/conf.acadia.2005.078
summary The paper outlines a pedagogical approach whereby a number of technology-intensive skills can be quickly learned to a level of useful practicality through a series of discrete, yet cumulative explorations with the design goal of creating intelligently responsive architectural systems. The culmination of such explorations in creating full-scale interactive architectural environments leads to a relatively unexplored area of negotiation whereby individual systems must necessarily manage environmental input to mediate a behavioural output. The emerging area of interactive architecture serves as a practical means for inventing entirely new ways of developing spaces, and the designing and building environments that address dynamic, flexible and constantly changing needs. Interactive architecture is defined here as spaces and objects that can physically re-configure themselves to meet changing needs. The central issues explored are human and environmental interaction and behaviours, embedded computational infrastructures, kinetic and mechanical systems and physical control mechanisms. Being both multidisciplinary and technology-intensive in nature, architects need to be equipped with at least a base foundational knowledge in a number of domains in order to be able to develop the skills necessary to explore, conceive, and design such systems. The teaching methods were carried out with a group of undergraduate design students who had no previous experience in mechanical engineering, electronics, programming, or kinetic design with the goal of creating a responsive kinetic system that can demonstrate physical interactive behaviours on an applicable architectural scale. We found the approach to be extremely successful in terms of psychologically demystifying unfamiliar and often daunting technologies, while simultaneously clarifying the larger architectural implications of the novel systems that had been created. The authors summarize the processes and tools that architects and designers can utilize in creating and demonstrating of such systems and the implications of adopting a more active role in directing the development of this new area of design.
series ACADIA
email
last changed 2022/06/07 07:50

_id sigradi2005_144
id sigradi2005_144
authors Goldberg, Sergio Araya
year 2005
title ICHTYOMORPH - Design and development of a fish-skin double façade system for freeform super tall buildings using Parametric Design Tools
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 144-149
summary Parametric design implies a whole new paradigm of non standard design through the propagation of the difference, the repetition of variation. The ability to control variation and adaptation to local conditions allows more precise yet complex designs. This paper describes a research project designing double skin façade systems for tall buildings using a parametric approach. These designs are tested later through rapid prototyping techniques. This research aims its design towards an adjustable façade structure, articulated according to various complex geometrical conditions on the façade of a building. The skin is conceived as a light, flexible, reconfigurable composition responding to different criteria regarding the design, its environment or the program. It achieves this through different levels of control on different scales of the project, by embedding several layers of parametric features, which are nested one inside the other, in order to produce the overall rainscreen surface of the tower.
series SIGRADI
email
last changed 2016/03/10 09:52

_id 2d39
id 2d39
authors Heylighen A, Heylighen F, Bollen J, Casaer M
year 2005
title A DISTRIBUTED MODEL FOR TACIT DESIGN KNOWLEDGE EXCHANGE
source SID 2005, Proceedings of the 4th Social Intelligence Design Workshop, Stanford University, March 2005 (CD Rom)
summary The distributed cognition approach, and by extension the domain of social intelligence design, attempts to integrate three until recently separate realms: mind, society, and matter. The field offers a heterogeneous collection of ideas, observations, and case studies, yet lacks a coherent theoretical framework for building models of concrete systems and processes. Despite the intrinsic complexity of integrating individual, social and technologically-supported intelligence, the paper proposes a relatively simple ‘connectionist’ framework for conceptualizing a distributed cognitive system. This framework represents shared information sources (documents) as nodes connected by links of variable strength, which increases interactively with the number of co-occurrences of documents in the patterns of their usage. This connectionist learning procedure captures and uses the implicit knowledge of its community of users to help them find relevant information, thus supporting an unconscious form of exchange. The principles are illustrated by an envisaged application to a concrete problem domain: the dynamic sharing of design knowledge among a multitude of architects through a database of associatively connected building projects.
keywords connectionism, distributed cognition, tacit knowledge, architectural design
series other
type normal paper
email
last changed 2005/04/01 13:24

_id 2005_399
id 2005_399
authors Johansson, Mikael and Roupé, Mattias
year 2005
title From CAD to VR – Implementations for Urban Planning and Building Design
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 399-405
doi https://doi.org/10.52842/conf.ecaade.2005.399
summary At present time, three-dimensional objects are often represented with 2D-data in urban planning and building design. In order to get all the involved parties to fully understand a certain project, this may not be enough. More and more projects therefore take use of the Virtual Reality (VR) technique as a complement to traditional 2D drawings and sketches. All the involved parties can then share a common frame of reference for all discussions regarding a certain project. Unfortunately, the technique is not yet adapted to fit the current building design process. In this paper, we present a solution for semi-automatic generation of a VR-model based on 3D CAD information and aerial photos obtained from the City Planning Authorities in Sweden. The data is imported to support real-time editing of terrain, roads and buildings. We also present a framework for importing 3D-models created in Autodesk Revit which enables a seamless integration of modern 3D CAD and VR-models. The features are implemented in a software developed at Chalmers Visualization studio (Gothenburg, Sweden) and technical details about terrain handling and speed-up techniques will be given.
keywords Virtual Reality; 3D City modeling; Urban planning; Terrain; Visualization
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac20053205
id ijac20053205
authors Kacher, Sabrina; Halin, Gilles; Bignon, Jean-Claude; Humbert, Pascal
year 2005
title A method for Constructing a Reference Image Database to Assist with Design Process. Application to the Wooden Architecture Domain
source International Journal of Architectural Computing vol. 3 - no. 2, 227-244
summary Designing architectural projects requires the introduction of references, because design is an activity oriented towards a result which does not yet exist. If we summarise the current categories used in Artificial Intelligence to characterise the different forms of reasoning, we are able to consider that design is more the concern of the induction or the abduction mechanism than the deduction mechanism. Moreover, the main characteristic of the designer's activity is to work towards non-routine situations with the use of many references. In this paper we will present method principles to construct a reference image database. These references will enable the designer to further in solving the design problem. To illustrate these reference usage, we choose photographic images belonging to the wooden construction domain We also present at the end of the paper an experiment which aims to evaluate the real help that this reference image database can bring to designers during their creation task.
series journal
last changed 2007/03/04 07:08

_id sigradi2005_640
id sigradi2005_640
authors Kensek, Karen M.
year 2005
title Digital Reconstructions: Confidence and AmbiguitY
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 640-644
summary Digital representations have progressed tremendously from the earliest wireframe images to realistic ray-traced renderings that are often indistinguishable from real-life. Yet, in many cases, in the fooling of the eyes, one should not also fool the brain. Especially in the reconstruction of the past, it may be useful for the visualization to also contain information about the certainty of the result. Methods exist to show what data was missing and is now restored and the confidence level of the reconstruction. This in-progress summary paper will discuss the overall usefulness of many of these techniques and list methods from architecture, archaeology, and other fields towards providing information beyond the visualization.
series SIGRADI
email
last changed 2016/03/10 09:53

_id sigradi2005_178
id sigradi2005_178
authors Kenzari, Bechir
year 2005
title Synthesis of cutting-edge technologies and miniature tooling in the physical modelling of architectural objects designed on CAD
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 178-183
summary Developments made in the Rapid Prototyping and CAD/CAM (including CNC and Laser) Technologies are giving designers the advantage of building physical realities, at whatever scale, directly and automatically from computer files, with the explicit implications of speed, precision and flexibility. Yet there are modeling details that can only be solved through the use of specialized materials, accessories and miniature tools which neither fall under the CNC, laser or rapid prototyping categories, but complement them. The most emphatic aspect of this research is to show how technical expertise, craftsmanship and detailing in the making of physical models require the intervention of not-so-well-known tools and machines. In the absence of an ideal technology to convert all 3-d digital models into physical models, and despite the advent of CAD-CAM and Rapid Prototyping, the combination of high technology and miniature tooling becomes the ultimate way to go in order to solve many modeling requirements.
series SIGRADI
email
last changed 2016/03/10 09:53

_id cdc2008_243
id cdc2008_243
authors Loukissas, Yanni
year 2008
title Keepers of the Geometry: Architects in a Culture of Simulation
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 243-244
summary “Why do we have to change? We’ve been building buildings for years without CATIA?” Roger Norfleet, a practicing architect in his thirties poses this question to Tim Quix, a generation older and an expert in CATIA, a computer-aided design tool developed by Dassault Systemes in the early 1980’s for use by aerospace engineers. It is 2005 and CATIA has just come into use at Paul Morris Associates, the thirty-person architecture firm where Norfleet works; he is struggling with what it will mean for him, for his firm, for his profession. Computer-aided design is about creativity, but also about jurisdiction, about who controls the design process. In Architecture: The Story of Practice, Architectural theorist Dana Cuff writes that each generation of architects is educated to understand what constitutes a creative act and who in the system of their profession is empowered to use it and at what time. Creativity is socially constructed and Norfleet is coming of age as an architect in a time of technological but also social transition. He must come to terms with the increasingly complex computeraided design tools that have changed both creativity and the rules by which it can operate. In today’s practices, architects use computer-aided design software to produce threedimensional geometric models. Sometimes they use off-the-shelf commercial software like CATIA, sometimes they customize this software through plug-ins and macros, sometimes they work with software that they have themselves programmed. And yet, conforming to Larson’s ideas that they claim the higher ground by identifying with art and not with science, contemporary architects do not often use the term “simulation.” Rather, they have held onto traditional terms such as “modeling” to describe the buzz of new activity with digital technology. But whether or not they use the term, simulation is creating new architectural identities and transforming relationships among a range of design collaborators: masters and apprentices, students and teachers, technical experts and virtuoso programmers. These days, constructing an identity as an architect requires that one define oneself in relation to simulation. Case studies, primarily from two architectural firms, illustrate the transformation of traditional relationships, in particular that of master and apprentice, and the emergence of new roles, including a new professional identity, “keeper of the geometry,” defined by the fusion of person and machine. Like any profession, architecture may be seen as a system in flux. However, with their new roles and relationships, architects are learning that the fight for professional jurisdiction is increasingly for jurisdiction over simulation. Computer-aided design is changing professional patterns of production in architecture, the very way in which professionals compete with each other by making new claims to knowledge. Even today, employees at Paul Morris squabble about the role that simulation software should play in the office. Among other things, they fight about the role it should play in promotion and firm hierarchy. They bicker about the selection of new simulation software, knowing that choosing software implies greater power for those who are expert in it. Architects and their collaborators are in a continual struggle to define the creative roles that can bring them professional acceptance and greater control over design. New technologies for computer-aided design do not change this reality, they become players in it.
email
last changed 2009/01/07 08:05

_id acadia05_212
id acadia05_212
authors Luhan, Gregory A.
year 2005
title Modern Translations, Contemporary Methods: DL-1_Resonance House®
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 212-225
doi https://doi.org/10.52842/conf.acadia.2005.212
summary As the first design-build-fabricate-assemble experiment at our school, the intent of the studio was to design a framework from which to examine a “lived space” through digital-to-digital processes. Moving from digital models and physical stereo lithographic models to hand-fabrication and digital assembly allowed the students to move from creation to completion. As part of our holistic design process, the studio fabricated almost all components for the project. These elements include the wood flooring, the copper and wood skins, the building’s structural panels, and the two-story light vortex. This single-family, in-fill house is located within an historic downtown neighborhood and is subject to historic district zoning regulations, design guidelines, and Board of Architecture Review approvals. The project is analogous to design challenges presenting themselves in historic districts throughout the United States including the Savannah, Georgia site for the 2005 ACADIA Conference. The scale of the project relates well to the horizontal nature of this context and after a formal, televised review process with the local Board of Architecture Review, the project represents a dynamic, yet sympathetic architectural dialogue with the surrounding buildings. The project develops simultaneously from the exterior and interior resulting in two courtyards that mediate the urban “front door” and the private “terrace.” The students designed these areas through a series of two-dimensional axonometric drawings, three-dimensional physical and digital models, and four-dimensional time-based animations. The building massing separates into two core elements: gabled copper volume and wood screen volume. These elements maintain their conceptual purity by using the same types of modulations on their skins. The copper form with its deep-cut reveals and proportionally placed light scoring patterns reflects the horizontal datum lines of the floor, sill, threshold, and ceiling. In contrast, the wood volume reflects these same lines as applied “shadow screens” which create depths that seamlessly tie together the side, rear, and front facades.The hinge point of the house is the light vortex. Designed in Rhino, translated in Catia, fabricated out of aluminum, and clad in stainless steel, this two-story sculptural element will literally wrap light around its surfaces. Like a sunflower, the light vortex, with its angel hair stainless steel finish, responds to the incremental differentiation of light throughout the day. Photosensitive floor-mounted lights designed to augment the volume of natural light will provide a continuous light rendition on the sculpture. The project, scheduled for completion at the end of the 2005 summer session, is at the time of this submission about 60% complete.
series ACADIA
email
last changed 2022/06/07 07:59

_id acadia20_38
id acadia20_38
authors Mueller, Stephen
year 2020
title Irradiated Shade
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 38-46.
doi https://doi.org/10.52842/conf.acadia.2020.1.038
summary The paper details computational mapping and modeling techniques from an ongoing design research project titled Irradiated Shade, which endeavors to develop and calibrate a computational toolset to uncover, represent, and design for the unseen dangers of ultraviolet radiation, a growing yet underexplored threat to cities, buildings, and the bodies that inhabit them. While increased shade in public spaces has been advocated as a strategy for “mitigation [of] climate change” (Kapelos and Patterson 2014), it is not a panacea to the threat. Even in apparent shade, the body is still exposed to harmful, ambient, or “scattered” UVB radiation. The study region is a binational metroplex, a territory in which significant atmospheric pollution and the effects of climate change (reduced cloud cover and more “still days” of stagnant air) amplify the “scatter” of ultraviolet wavelengths and UV exposure within shade, which exacerbates urban conditions of shade as an “index of inequality” (Bloch 2019) and threatens public health. Exposure to indirect radiation correlates to the amount of sky visible from the position of an observer (Gies and Mackay 2004). The overall size of a shade structure, as well as the design of openings along its sides, can greatly impact the UV protection factor (UPF) (Turnbull and Parisi 2005). Shade, therefore, is more complex than ubiquitous urban and architectural “sun” and “shadow studies” are capable of representing, as such analyses flatten the three-dimensional nature of radiation exposure and are “blind” to the ultraviolet spectrum. “Safe shade” is contingent on the nuances of the surrounding built environment, and designers must be empowered to observe and respond to a wider context than current representational tools allow.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2005_2_11_132
id cf2005_2_11_132
authors SCHNABEL Marc Aurel
year 2005
title Interplay of Domains
source Learning from the Past a Foundation for the Future [Special publication of papers presented at the CAAD futures 2005 conference held at the Vienna University of Technology / ISBN 3-85437-276-0], Vienna (Austria) 20-22 June 2005, pp. 11-20
summary A diversified, open-ended, and critical approach of architectural design that interplays with a variety of media, suggests an innovative development to gain new spatial solutions. Architects and designers are aware of these possibilities by integrating physical and digital media during their design process, yet the creative potentials of these media are rarely used to their full potentials. The architectural design process can be enriched by using uncommon perceptions, comprehensions, and conceptions of spatial design translations within both physical and virtual environments. A wilful interplay with the design media and the process offers the possibility to dismantle the limits of each domain and explore the design itself in unorthodox ways. The overall engagement within both real and virtual environments leads to innovative form creations and powerful design solutions. Following the tradition of artists, who explore media in unusual ways, new architectural interpretations emerge, reflecting on the media as well as the architectural design.
keywords design process, design media, form generation, physical and virtual environments
series CAAD Futures
email
last changed 2005/05/05 07:06

_id sigradi2005_505
id sigradi2005_505
authors Senagala, Mahesh
year 2005
title Kinetic, Responsive and Performative: A Complex-Adaptive approach to Smart Architecture
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 505-510
summary Smart architecture is fast becoming a buzzword in architecture and related disciplines. However, it is not entirely clear what constitutes smart architecture and how relates to or differs from such closely related camps as responsive architecture, performative architecture, kinetic architecture, and adaptive architecture. This paper poses the essential and critical questions about smart architecture from a complex-adaptive systems point of view. The paper also illustrates the attributes of smart architecture with a number of seemingly disparate, yet conceptually connected design developments.
series SIGRADI
type normal paper
email
last changed 2016/03/10 10:00

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_982063 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002