CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ascaad2006_paper7
id ascaad2006_paper7
authors Lömker, Thorsten M.
year 2006
title Designing with Machines: solving architectural layout planning problems by the use of a constraint programming language and scheduling algorithms
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary In 1845 Edgar Allan Poe wrote the poem “The Raven”, an act full of poetry, love, passion, mourning, melancholia and death. In his essay “The Theory of Composition” which was published in 1846 Poe proved that the poem is based on an accurate mathematical description. Not only in literature are structures present that are based on mathematics. In the work of famous musicians, artists or architects like Bach, Escher or Palladio it is evident that the beauty and clarity of their work as well as its traceability has often been reached through the use of intrinsic mathematic coherences. If suchlike structures could be described within architecture, their mathematical abstraction could supplement “The Theory of Composition” of a building. This research focuses on an approach to describe principles in architectural layout planning in the form of mathematical rules that will be executed by the use of a computer. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a design problem, an exemplary method will be described to solve problems in architectural layout planning. Two problem domains will be examined: the design of new buildings, as well as the revitalization of existing buildings. Mathematical and syntactical difficulties that arise from the attempt to extract rules that relate to the process of building design will be pointed out. To avoid conflicts relating to theoretical subtleness a customary approach has been chosen in this work which is adopted from Operations Research. In this approach design is a synonym for planning, which could be described as a systematic and methodical course of action for the analysis and solution of current or future problems. The planning task is defined as an analysis of a problem with the aim to prepare optimal decisions by the use of mathematical methods. The decision problem of a planning task is represented by an optimization model and the application of an efficient algorithm to aid finding one or more solutions to the problem. The basic principle underlying the approach presented herein is the understanding of design in terms of searching for solutions that fulfill specific criteria. This search will be executed by the use of a constraint programming language, which refers to mathematical as well as to integer and mixed integer programming. Examples of architectural layout problems will be presented that can be solved by the use of this programming paradigm. In addition to this, a second programming approach resulting from the domain of resource-allocation has been followed in this research. It will be demonstrated that it is as well possible, to aid architectural layout planning by the use of scheduling algorithms.
series ASCAAD
email
last changed 2007/11/27 08:22

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id acadia07_040
id acadia07_040
authors Hyde, Rory
year 2007
title Punching Above Your Weight: Digital Design Methods and Organisational Change in Small Practice
doi https://doi.org/10.52842/conf.acadia.2007.040
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 40-47
summary Expanding bodies of knowledge imply expanding teams to manage this knowledge. Paradoxically, it can be shown that in situations of complexity—which increasingly characterise the production of architecture generally—the small practice or small team could be at an advantage. This is due to the increasingly digital nature of the work undertaken and artefacts produced by practices, enabling production processes to be augmented with digital toolsets and for tight project delivery networks to be forged with other collaborators and consultants (Frazer 2006). Furthermore, as Christensen argues, being small may also be desirable, as innovations are less likely to be developed by large, established companies (Christensen 1997). By working smarter, and managing the complexity of design and construction, not only can the small practice “punch above its weight” and compete with larger practices, this research suggests it is a more appropriate model for practice in the digital age. This paper demonstrates this through the implementation of emerging technologies and strategies including generative and parametric design, digital fabrication, and digital construction. These strategies have been employed on a number of built and un-built case-study projects in a unique collaboration between RMIT University’s SIAL lab and the award-winning design practice BKK Architects.
series ACADIA
email
last changed 2022/06/07 07:50

_id ddss2006-hb-85
id DDSS2006-HB-85
authors J.A.M. Borsboom-van Beurden, R.J.A. van Lammeren, T. Hoogerwerf, and A.A. Bouwman
year 2006
title Linking Land Use Modelling and 3D Visualisation - A mission impossible?
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 85-101
summary Additional to the traditional land use maps 3D visualisation could provide valuable information for applications in the field of spatial planning, related to ecological and agricultural policy issues. Maps of future land use do not always reveal the appearance of the physical environment (the perceived landscape) as a result of land use changes. This means that 3D visualisations might shed light on other aspects of changed land use, such as expected differences in height or densities of new volume objects, or the compatibility of these changes with particular characteristics of the landscape or urban built environment. The Land Use Scanner model was applied for the Netherlands Environmental Assessment Agency's 'Sustainability Outlook' to explore land use changes, followed by GIS analyses to asses both the development of nature areas and the degree of urbanisation within protected national landscapes. Since it was felt that 3D visualisation could complement the resulting land use maps, the land use model output was coupled to 3D visualisation software in two different ways: 1) through Studio Max software in combination with iconic representation of the concerned land use types and 2) through 3D components of GIS software. However, the use of these techniques on a national scale level for the generation of semi-realistic 3D animations raised a number of conceptual and technical problems. These could be partly ascribed to the particular format and of the Land Use Scanner output. This paper discusses the methods and techniques which have been used to couple the output of the land use model to 3D software, the results of both approaches, and possible solutions for these problems.
keywords Land use models, 3D visualisation, Policy-making
series DDSS
last changed 2006/08/29 12:55

_id ascaad2006_paper12
id ascaad2006_paper12
authors Katodrytis, George
year 2006
title The Autopoiesis and Mimesis of Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The use of digital technology in architecture has proven to be more assertive than originally thought: it has reconditioned the nature of the design process, and established new practices and techniques of fabrication. The 21st century began with the technology of art. There is a new responsiveness to the reading and understanding of digital space, which is characterized by complexity and the uncanny. Recent applications in digital technology show inquisitiveness in the contentious subject Genetic Algorithms. This new architectural process is characterized by two main shifts: from poiesis (or poetry) to autopoiesis, and from authenticity to mimesis. Since evolutionary simulations give rise to new forms rather than design them, architects should now be artists and operators of both Inventive and Systematic design. Inventive design: The digital media should bring about poiesis (poetry). Digital spaces reveal and visualize the unconscious desires of urban spaces and bring forth new dreamscapes, mysterious and surreal. This implies a Freudian spatial unconscious, which can be subjected to analysis and interpretation. “Space may be the projection or the extension of the physical apparatus”, Freud noted1. Space is never universal, but subjective. A space would be a result of introjection or projection – which is to say, a product of the thinking and sensing subject as opposed to the universal and stable entity envisaged since the Enlighten. There is a spatial unconscious, susceptible to analysis and interpretation. Systematic Design: Digital media should bring about an autopoiesis. This approach calls into question traditional methods of architectural design – which replace the hierarchical processes of production known as “cause and effect” - and proposes a design process where the architect becomes a constructor of formal systems. Will the evolutionary simulation replace design? Is metric space dead? Is it replaced by the new definition of space, that of topology? The new algorithmic evolutionary conditions give architecture an autopoiesis, similar to biological dynamics. The use of algorithms in design and fabrication has shifted the role of the architect from design to programming. Parametric design has introduced another dimension: that of variation and topological evolution, breaking the authentic into the reused. Architecture now is about topology than typology, variation than authenticity, it is mimetic than original, uncanny and subconscious than merely generic. In a parallel universe, which is both algorithmic and metaphysical, the modeling machine creates a new abstraction, the morphogenesis of the “new hybrid condition”. The emphasis of the exploration is on morphological complexity. Architecture may become – paradoxically - rigorous yet more uncanny and introverted.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e149b
id sigradi2006_e149b
authors Kendir, Elif
year 2006
title Prêt-à-Construire – An Educational Inquiry into Computer Aided Fabrication
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 162-165
summary This paper aims to show and discuss the relevance of developing necessary strategies for reintegrating the concept of fabrication into the architectural design process. The discussion will be partly based on the outcome of a graduate architectural design studio conducted in Spring semester 2002-2003. The graduate studio was part of a series of exploratory studies conducted on the nature of architectural design process transformed by information technologies. Preceded by studios investigating cognition and representation, this last studio focused on the concept of fabrication. The overarching aim of the studio series was to put CAD and CAM in context both within the actual architectural design process and within architectural education. The last of this series, which will be discussed within the frame of this paper, has specifically focused on CAM and the concept of fabrication in architecture. In accordance with the nature of a design studio, the research was more methodological than technical. The studio derived its main inspiration from the constructional templates used in dressmaking, which can be considered as an initial model for mass customization. In this context, the recladding of Le Corbusier’s Maison Domino was given as the main design problem, along with several methodological constraints. The main constraint was to develop the design idea through constructional drawings instead of representational ones. The students were asked to develop their volumetric ideas through digital 3D CAD models while working out structural solutions on a physical 1/50 model of Maison Domino. There was also a material constraint for the model, where only specified types of non-structural paper could be used. At this stage, origami provided the working model for adding structural strength to sheet materials. The final outcome included the explanation of different surface generation strategies and preliminary design proposals for their subcomponents. The paper will discuss both the utilized methodology and the final outcome along the lines of the issues raised during the studio sessions, some of which could be decisive in the putting into context of CAD – CAM in architectural design process. One such issue is mass customization, that is, the mass production of different specific elements with the help of CAM technologies. Another issue is “open source” design, indicating the possibility of a do-it-yourself architecture, where architecture is coded as information, and its code can be subject to change by different designers. The final key issue is the direct utilization of constructional drawings in the preliminary design phase as opposed to representational ones, which aimed at reminding the designer the final phase of fabrication right from the beginning. Finally, the paper will also point at the problems faced during the conduct of the studio and discuss those in the context of promoting CAM for architectural design and production in countries where there is no actual utilization of these technologies for these purposes yet.
keywords Education; Fabrication; CAM
series SIGRADI
email
last changed 2016/03/10 09:53

_id 2006_714
id 2006_714
authors Kona, Silika Rahman and Saleh Uddin
year 2006
title Movement in Architecture - An Analytical Approach Towards Organic Characteristics
doi https://doi.org/10.52842/conf.ecaade.2006.714
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 714-719
summary Nature is the fundamental and recurring inspiration of organic architecture. Living organisms, both in their outward forms and in their inner structures, offer endless ideas and concepts for design. Organic architecture works with metamorphosis (the process of growth and change), the notion of “design from within”. Why should architecture be lifeless and static? Here, Movement, a unique quality of living organism is used to contribute to architecture. We cannot make a new life but we can take the characteristics to make changes in our environment, seeking not to imitate nature’s appearance, but instead to imaginatively apply its profound principles. The focus of this paper is to examine and categorize the different kinds of movement that exist in nature, understanding how their purpose can be effectively used in architecture. The topic explores techniques of living organisms used for function and defense and discusses possible implementation in architecture. Movement has the potentiality to introduce flexibility, ecological efficiency and building defense through deformable, transportable, shape shifting and morphing forms.
keywords Organic Characteristics; Movement
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id 2006_098
id 2006_098
authors Parthenios, Panagiotis
year 2006
title Critical points for change - A vital mechanism for enhancing the conceptual design process
doi https://doi.org/10.52842/conf.ecaade.2006.098
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 98-105
summary The Conceptual design is not a linear process; it consists of sub-processes, levels of refinement, which are individual but interact with each other. Each level of refinement corresponds to the types of media and tools used during conceptual design. Architects take advantage of a broad palette of tools and media for design, because each tool has its own strengths and weaknesses and provides an additional value—an added level of vision—to the architect. This closely relates to the notion of Critical Points for Change (CPC) a contribution this study makes towards a better understanding of the uniqueness of the conceptual design process. CPC are crucial moments when the architect suddenly becomes able to “see” something which drives him to go back and either alter his idea and refine it or reject it and pursue a new one. They are crucial parts of the design process because they are a vital mechanism for enhancing design. This characteristic of the nature of the conceptual design process is independent of the tools. Nevertheless, the right tools play an extremely important role. The distinctive capabilities of each tool allow the architect to deal successfully with CPC and overcome the points in the design process where he or she feels “stuck.”
keywords Conceptual design; design process; tool; design ability; computational support
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia06_403
id acadia06_403
authors Taylor, Justin
year 2006
title The Value of Arrhythmic Sounds in Isolated Space
doi https://doi.org/10.52842/conf.acadia.2006.403
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 403-409
summary This study examines the impact of bringing sound uninterrupted from outside a building into isolated spaces within the building. Is a silent space less or more productive than a space that is filled with normal outside sounds? Can bringing sound in from the outside, thereby allowing the users an uninterrupted connection to the outside without being in physical proximity of the exterior, make a difference in the work they do?Using music in these spaces has become commonplace. However, this research chooses to address sounds that do not mask the arrhythmic sounds of the world. These random sounds might break a person’s concentration, just as a bird flying by a window breaks one’s concentration. Even though these sounds of nature, vehicles, and people interrupt, do they give a greater sense of place than ambient music? Do these breaks in concentration help keep an individual oriented and aware of time while increasing both comfort and connection to the work being done?To test this thesis, students working in an isolated studio/classroom space will be subjected to the same sounds students in rooms near the outside would hear. Sounds will be provided by a direct audio link with the outside of the building. Student reaction will be evaluated by a series of observations and surveys that will focus on any differences in the amount of time spent on task, the sense of productivity experienced, the overall sense of functioning at a higher level and the interaction of student and professor.
series ACADIA
email
last changed 2022/06/07 07:58

_id 8d88
id 8d88
authors Verdy Kwee, Antony Radford, Dean Bruton, Ian Roberts
year 2006
title Architecture | Media | Representations : Survey Data 2006
summary In the architecture education field, the modes of lecturers‚ deliveries are constantly assessed and rightly so, for their performance and effectiveness in disseminating information or imparting knowledge. This is normally done through institution-wide survey of student satisfaction. But are lectures the only source of knowledge in the process of understanding a particular architecture, for example? As we understand, this is not the case. Interestingly enough, as the attached survey shows, they are not even the preferred ones by most.

It could easily be established that architectural information has undergone various manners of representations in publications; most, if not all of which are author-driven in contents and structures. To whatever extent that these publications may have been relied upon as other sources of information and knowledge, it is unusual that there appears to be an absence of assessment of the effectiveness they assume to deliver. It is often found that in such publications, readers are met with irrational expectations of prior understanding of the subject matters that the publications themselves often become beacons which spotlight the positions or commands of knowledge of the authors rather than ones that genuinely guide readers to achieve maximum possible comprehension. Could the reclusive nature of the activity, brought upon by these publications unlike that of the lecture settings, allow them to be easily unquestion-ed/able? Or have they become so effective that their positions are beyond reproach?

In the age where a shadow of change is being brought upon by the presence of a more interactive electronic delivery, it is an interesting period to retreat and reassess the position of the current available media in relation to message recipients. Have the available sources of information really been effective? Will/Should Technology see mere replicas of traditional mode of delivery in digital forms? Could we see possible shifts of delivery methods? What should we be prepared for? These questions were springboards that launched the need for the survey. However, the collected data may be used in a few other various manners than to locate the present scenario or serve as basis to drive the future direction/s in architectural information representations.

keywords survey, media, representations, architectural information
series other
type normal paper
email
last changed 2006/07/05 05:36

_id acadia06_455
id acadia06_455
authors Ambach, Barbara
year 2006
title Eve’s Four Faces interactive surface configurations
doi https://doi.org/10.52842/conf.acadia.2006.455
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 455-460
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture.The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes: the Individuated, the Traditional, the Conflicted, and the Assured (York and John 1992). For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual. However, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure.” The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how each configuration may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_040
id 2006_040
authors Ambach, Barbara
year 2006
title Eve’s Four Faces-Interactive surface configurations
doi https://doi.org/10.52842/conf.ecaade.2006.040
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 40-44
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture. The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes; the “Individuated”, the “Traditional”, the “Conflicted” and the “Assured”. (York and John, 1992) For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual; however, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure”. The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how it may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
keywords interaction; digital; environments; psychology; prototypes
series eCAADe
type normal paper
last changed 2022/06/07 07:54

_id 2006_818
id 2006_818
authors Angulo, Antonieta
year 2006
title Communication in the Implementation of a Metacognitive Strategy for Learning to Design
doi https://doi.org/10.52842/conf.ecaade.2006.818
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 818-825
summary This paper describes an instructional communication strategy that makes use of time-based media techniques (story boarding and animation) in order to empower design studios with means to promote their students’ awareness on the acquisition of metacognitive knowledge and skills. This paper highlights the importance of including the communication of the design processes in the evaluation of learning outcomes. Moreover, the paper proposes that the students should be made constantly aware of their design processes and how effective are the methods they use. It is in this state of awareness that metacognitive knowledge is acquired: knowing how to learn to design. We can cultivate, exploit and enhance the capabilities of design learners, making them more confident and independent as learners as they understand what they need to know and what kind of strategies might work for different design problems and learning opportunities. In the development of an instructional strategy to accomplish this learning goal, the paper proposes it may be possible and potentially beneficial to transfer current metacognitive support strategies from a course on computer visualization techniques to the design studios. The paper elaborates on how these communication strategies could be transferred and implemented in a design studio setting. The results of a recent controlled experiment and considerations about the cognitive style of design students will be used in the preparation of recommendations for future full scale implementations in early design studios.
keywords Design learning; metacognitive learning strategy; time-based media
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
doi https://doi.org/10.52842/conf.acadia.2006.230
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id caadria2006_601
id caadria2006_601
authors BINSU CHIANG, MAO-LIN CHIU
year 2006
title PRIVATE/UN-PRIVATE SPACE: Scenario-based Digital Design for Enhancing User Awareness
doi https://doi.org/10.52842/conf.caadria.2006.x.s8b
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 601-603
summary Context awareness is important for human senses of places as well as human computer interaction. The aim of this research paper is focusing on controlling the user's privacy in a smart space which is adaptive to different users for enhancing the user's awareness in his diary life. In Environmental Psychology, the definition of privacy is that an individual has the control of deciding what information of himself is released to others, and under how he interact with others. (Westin 1970) And privacy is categorized as the linguistic privacy and visual privacy. (Sundstorm 1986). Solutions for privacy control: Plan Layout, Vision Boundary, Access Control and Architecture Metaphor - the transmission of information is not ascertainable for every single user. Although information are shown in public, but information is implied by cues and symbols. Only a certain user or a group of users have access to the full context of information. The methodology is to form an analytic framework to study the relationship between information, user and activities by using the computational supports derived from KitchenSense, ConceptNet, Python, 3d Studio Max and Flash; and to record patterns built up by users' behaviour and actions. Furthermore, the scenario-based simulation can envision the real world conditions by adding interfaces for enhancing user awareness.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_786
id 2006_786
authors Burry, Jane and Mark Burry
year 2006
title Sharing hidden power - Communicating latency in digital models
doi https://doi.org/10.52842/conf.ecaade.2006.786
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 786-793
summary As digital spatial models take on the complex relationships inherent in a lattice of dependencies and variables, how easy is it to fully comprehend and communicate the underlying structure and logical subtext of the architectural model: the metadesign? The design of a building, the relationships between a host of different attributes and performances was ever a complex system. Now the models, the representations, are in the early stages of taking on more of that complexity and reflexivity. How do we share and communicate these modelling environments or work on them together? This paper explores the issue through examples from one particular associative geometry model constructed as research to underpin the collaborative design development of the narthex of the Passion Façade on the west transept of Gaudi’s Sagrada Família church, part of the building which is now in the early stages of construction.
keywords Design communication; CAD CAM; mathematical models
series eCAADe
email
last changed 2022/06/07 07:54

_id 2006_770
id 2006_770
authors Charbonneau, Nathalie; Dominic Boulerice; David W. Booth and Temy Tidafi
year 2006
title Understanding Gothic Rose Windows with Computer-Aided Technologies
doi https://doi.org/10.52842/conf.ecaade.2006.770
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 770-777
summary This paper explains the parameters and methodology at the heart of an ongoing research project that seeks to verify whether one can trace back the genesis of any given artefact or work of art by means of computer-aided modeling. In its endeavour our research team Computer Assisted Design Research Group (GRCAO) aims to initiate and propose novel methods of modeling design processes. This approach is exemplified by a case study dealing with rose tracery designs adorning Gothic cathedrals of 12th and 13th Century Île-de-France. A computerized model reenacting their design process was developed along with an interface enabling the translation of the designer’s intentions into a virtual design space. The stated goal of this research project is to evaluate empirically to what extent our modeling strategies can grasp a given artefact as a logical and articulate ensemble. Furthermore, we seek eventually to determine whether this kind of software programme would prove an adequate tool in the development of the architectural designer’s cognitive abilities.
keywords Architectural modeling; architectural know-how; Gothic rose windows; functional programming
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_680293 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002