CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id ddss2006-hb-309
id DDSS2006-HB-309
authors John S. Gero and Udo Kannengiesser
year 2006
title A Framework for Situated Design Optimization
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 309-324
summary This paper presents a framework for situated design optimization that expands the traditional view of design optimization. It is based on the notion of interaction providing the potential for modifications of various aspects of the optimization process: problem formulation, the optimization tool, the designer and ultimately the result. In contrast to other approaches, these modifications can drive further interactions within the same optimization process. We use parts of the situated function-behaviour-structure (FBS) framework as an ontological basis to describe the effects of intertwined interactions and modifications on the state space of ongoing optimization processes.
keywords Design optimization, Situatedness
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ddss2006-pb-101
id DDSS2006-PB-101
authors Aloys W.J. Borgers, I.M.E. Smeets, A.D.A.M. Kemperman, and H.J.P. Timmermans
year 2006
title Simulation of Micro Pedestrian Behaviour in Shopping Streets
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 101-116
summary Over the years, scholars have developed various models of pedestrian movement. These models can be used to assess the effects of detailed design decisions or to predict pedestrian behaviour under conditions of crowding. To date, not much attention has been paid to pedestrians' shopping behaviour at the micro level. Therefore, the main purpose of this project is to test a model that aims at simulating micro pedestrian behaviour in shopping streets, including entering shops. The model assumes a detailed network of links to represent the structure of street segments and entrances to the shops. The basic principle underlying the model is that a pedestrian moves from one link in the network to another, adjacent link. In fact, a pedestrian enters a segment at one side, heading for the other side of the segment. However, a pedestrian might enter the segment by leaving a shop as well. Then, the pedestrian might be heading for either side of the segment. While transferring from the current link to the next link, the pedestrian will be attracted by the shops along both sides of the street. The study area is Antwerp's main shopping street. During a one-week workshop in July 2004, students observed pedestrian movement in this shopping street. An inventory of some physical characteristics of the shopping street was made and pedestrians were tracked through two separate segments of the shopping street. In total, 334 pedestrians were tracked. A conventional multinomial logit model is used to simulate pedestrians' micro behaviour. The process of consecutively selecting links continues until the pedestrian has reached one of the terminal links or a shop. The model performs very well. Simulated routes were used to assess the validity of the model. Observed and simulated link loading correspond fairly well, however, the model seems to slightly mispredict the attraction of a number of shops.
keywords Micro pedestrian behaviour, Shopping street, Simulation
series DDSS
last changed 2006/08/29 12:55

_id ascaad2006_paper15
id ascaad2006_paper15
authors Anz, Craig and Akel Ismail Kahera
year 2006
title Critical Environmentalism and the Practice of Re-Construction
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This research focuses on the implications and applications of “critical environmentalism” as a quintessential epistemological framework for urban interventions while implementing digital applications that foster collective, round-table approaches to design. Essentially centering the environment (Umwelt) as an encompassing and interconnecting catalyst between multiple disciplines, philosophies, and modes of inquiry and technologies, the framework reciprocally fosters individual and critical identities associated with particular places, belief systems, and their participants as a primary concern. Critical environmentalism promotes a comprehensive, reciprocally unifying epistemological framework that can significantly inform architectural interventions and the tethered use of its technologies in order to foster increased vitality and a certain coinvested attention to the complexities of the greater domain. Grounding the theory in pedagogical practice, this paper documents an approach to urban design and architectural education, implemented as a case-study and design scenario, where divergent perspectives amalgamate into emergent urban configurations, critically rooted in the conditional partialities of place. Digital technologies are incorporated along with analogical methods as tools to integrate multiple perspectives into a single, working plane. Engaging the above framework, the approach fosters a critical (re)construction and on-going, co-vested regeneration of community and the context of place while attempting to dialogically converge multiple urban conditions and modes-of-thought through the co-application of various digital technologies. Critically understanding complex urban situations involves dialogically analyzing, mapping, and modeling a discursive, categorical structure through a common goal and rationale that seeks dialectic synthesis between divergent constructions while forming mutual, catalyzing impetuses between varying facets. In essence, the integration of varying technologies in conjunction, connected to real world scenarios and a guiding epistemic framework cultivates effective cross-pollination of ideas and modes through communicative and participatory interaction. As such it also provides greater ease in crosschecking between a multitude of divergent modes playing upon urban design and community development. Since current digital technologies aid in data collection and the synthesis of information, varying factors can be more easily and collectively identified, analyzed, and then simultaneously used in subsequent design configurations. It inherently fosters the not fully realized potential to collectively overlay or montage complex patterns and thoughts seamlessly and to thus subsequently merge a multitude of corresponding design configurations simultaneously within an ongoing, usable database. As a result, the pedagogical process reveals richly textured sociocultural fabrics and thus produces distinct amplifications in complexity and attentive management of diverse issues, while also generating significant narratives and themes for fostering creative and integrative solutions. As a model for urban community and social development, critical environmentalism is further supported the integrative use of digital technologies as an effective means and management for essential, communicative interchange of knowledge and thus rapprochement between divergent modes-of-thought, promoting critical, productive interaction with others in the (co)constructive processes of our life-space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac20064408
id ijac20064408
authors Ataman, Osman; Rogers, John; Ilesanmi, Adesida
year 2006
title Redefining the Wall: Architecture, Materials and Macroelectronics
source International Journal of Architectural Computing vol. 4 - no. 4, pp. 125-136
summary As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of a new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology of its own.
series journal
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000004/art00009
last changed 2007/03/04 07:08

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia06_555
id acadia06_555
authors Kudless, A., Vukcevich, I.
year 2006
title Flexible Formwork Research (FPR)
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] p. 555
doi https://doi.org/10.52842/conf.acadia.2006.x.r8t
summary FFR investigates the self-organization of plaster and elastic fabric to produce evocative visual and acoustic effects. Inspired by the work of the Spanish architect Miguel Fisac and his experiments with flexible concrete formwork in the 1960-70s, FFR continues this line of research by exploring aspects of pattern generation and recognition in relation to self-organized form. In line with the theme of the current exhibition, Digital Exchange, the work can be understood as a dialog between physical and digital computation. The form is a result of a negotiation between the digital manipulation of images and the physical deformations of materials under stress. Both digital and physical processes play an equal role in the final form of the plaster tiles.Reflecting on Miguel Fisac’s flexible concrete formwork, there was a desire to investigate the potential for more differentiated patterns while still using the same basic fabrication technique. This was accomplished through the use of a custom-designed script in Rhino that analyzes a given image and translates it into a field of points. These points establish areas of constraint in the elastic membrane of the mould. Through numerous physical tests, the minimum and maximum distances between constraint points was determined and these were entered into the script as limits for the point creation. If the points are too close, large wholes with very thin and weak plaster form whereas if the points are too far apart the amount of elastic deformation is so great that the weight of the plaster can cause failures to occur in the fabric mould. One of the most important aspects of the project is its resonance with the body and our natural attraction and repulsion for certain forms. Through exploring the natural self-organization of material under stress, FFR unintentionally reminds us of our own flesh. The plaster tiles resonate with our own body’s material as it sags, expands, and wrinkles in relationship with gravity, structure, and time.
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia06_317
id acadia06_317
authors Lee, E. S., Hong, S., Johnson, Brian R.
year 2006
title Context Aware Paper-Based Review Instrument A Tangible User Interface for Architecture Design Review
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 317-327
doi https://doi.org/10.52842/conf.acadia.2006.317
summary We describe the design and implementation of a prototype computer-supported collaborative work (CSCW) environment for review of architectural construction documents. This environment utilizes a novel plain-paper tangible interface that supports shared activity such as review of construction documents using an “over the shoulder” computational assistant called CAPRI.Despite the increasing use of computers, work in most architecture firms still largely revolves around paper drawings. Architects structure their work around paper instead of digital representations for reasons of legal liability and tradition, as well as technical limitations. While hardcopy is intuitive, dense, and easy to access, it lacks direct connection to the wide range of design knowledge increasingly available in interactive design environments. This lack is felt most acutely during design review processes, when the designer or reviewer is often called upon to consult and consider holistically a variety of supporting (backing) documents, a task which requires focused attention and a good memory, if errors are to be avoided.Our prototype system enables multiple reviewers to interact equally with a paper construction document using a tangible interface to query detail and backing data from a project knowledge base. We believe this will decrease the reviewer’s cognitive load by bringing design data to them in a contextual and timely way. In doing so, we believe errors will be caught sooner and mistakes reduced.
series ACADIA
email
last changed 2022/06/07 07:51

_id sigradi2006_e151c
id sigradi2006_e151c
authors Neumann, Oliver and Schmidt, Daniel
year 2006
title CNC Timber Framing – Innovative Applications of Digital Wood Fabrication Technology
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 304-307
summary The discourse on depleting natural resources and compromised environments have led to extended research on sustainable designs methods, building practices and materials. Beyond the actual performance of building products and components, research on sustainable building increasingly focuses on the long-term effects of the production, application and life cycle of building materials on the natural environment, human inhabitation and quality of life. Computer aided manufacturing technologies play a significant role not only in the transformation of design and building methods, but also in an extended discourse on cultural development. Globally available technologies connect the design and building process to a broad range of long-term ecological factors by creating a correlation between "the emergent political, economical and social processes and … architectural techniques, geometries and organization." Through this interrelationship to economy and culture, technology and its applications are also directly related to notions of place and territory as well as to fundamental ideas of ecology. The collaborative research and design study for an outdoor theater roof structure at the University of British Columbia Malcolm Knapp Research Forest at Maple Ridge, B.C., Canada, focuses on the use of digital media in prefabrication and material optimization. By utilizing small square section timber and minimizing the use of alienating connectors the research on the wood roof structure illustrates the potential of a design culture that seeks innovation in a broader understanding of ecology routed in regional culture, environmental conditions, economy and tradition. Labor intensive manufacturing techniques are redefined aided by computer controlled machines and virtual modeling of complex geometries is translated into simple operations. The result is a more sensible and accurate response to the place’s demands. In order to generate innovative design interventions that make a constructive long-term contribution to the preservation, maintenance and evolution of the environment, design needs to be based on a comprehensive understanding of its context and the distinctive qualities of the materials used. Following the example of the outdoor roof structure, this paper aims to define innovative design as work that resonates at the intersection of the fields of technology, material science, manufacturing processes, techniques of assembly and context that constitute the expanded context or complex ecology that projects need to engage. It is in design research studies like for the outdoor theater roof structure with focus on CNC wood fabrication technologies that the common design and building discourse is put to question, boundaries are explored and expanded and the collective understanding is improved towards ecological design.
keywords CNC Wood Fabrication; Design Innovation; Ecology
series SIGRADI
email
last changed 2016/03/10 09:56

_id ed47
id ed47
authors Pektas S T, Pultar M
year 2006
title MODELLING DETAILED INFORMATION FLOWS IN BUILDING DESIGN WITH THE PARAMETER-BASED DESIGN STRUCTURE MATRIX
source Design Studies, 27(1), pp. 99-122
summary The Architecture/Engineering/Construction (AEC) industry is one of the multidisciplinary domains in which collaboration among related parties is of utmost importance. Despite the intense flow of information between design professionals, there is a lack of research to better understand and manipulate these flows. Most of the current process modelling tools in the AEC industry do not enable analyses of iterative information cycles. Moreover, these tools represent the process at high levels, thus, they are inadequate for multi-parameter problems like building design. With a view to alleviate these problems, this paper introduces the use of parameter-based design structure matrix as a process modelling and system analysis tool for building design. The method reveals insights into the process structure, optimum sequence of parameter decisions, iterative cycles and concurrency in the process. The application of the method is demonstrated through a case study on suspended ceiling design in a real-life project.
keywords design management; design processes; modelling; planning; information processing
series other
type normal paper
email
last changed 2005/12/01 15:47

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2006_p019a
id sigradi2006_p019a
authors Ribeiro, Clarissa and Pratschke, Anja
year 2006
title Arquitetura Irreversível_ Tempo e Complexidade [Irreversible Architecture_ Time and Complexity]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 90-94
summary This paper aims at discussing how computational environments could give support to complex approaches of architectural design process. Focusing on generative design, the main goal is to allow the perception of architecture more as system than as object: form, structure and organization as emergences in non-linear, autoorganizational processes. It involves the interaction of a vast universe of factors and flows that performs as attractors or repellers for the architecture-systems evolution in time. The ideas presented here are results of the Master Research in Architecture and Complex Thought of Clarissa Ribeiro, and are part of a larger questioning about the relation of architectural design process and digital culture, discussed in our research group Nomads.USP [Center for Interactive Living Studies, http://www.eesc. usp. br/nomads].
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
doi https://doi.org/10.52842/conf.acadia.2007.284
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ddss2006-pb-373
id DDSS2006-PB-373
authors Rohan Bailey
year 2006
title Towards a Digital Design Teaching Tool - A look at the ideas that should define a digital design primer
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 373-386
summary Architecture in the 21st century has become an increasingly complex affair. In addition to new social and cultural norms, architects are inundated with constantly changing information regarding new materials, sustainable processes, and complex building types. This state of affairs has also affected the expectations placed on architectural education. Critics (in diverse spheres) have expressed concerns about the lack of requisite skills of graduates that characterise good design thinking strategies as well as promote responsible design. It has been proposed by this author in other forums that by using digital technology to empower design learning, we can allow students to confidently use (through reading and analysis) their sketches to develop conceptual ideas that reconcile disparate elements into a habitable, environmentally friendly and architecturally responsible whole that is fit for purpose, cost effective, sustainable and a delight to clients and users. This paper will seek to discuss one of the concepts that govern such a tool. It will start by delineating the problem (discussed earlier in the abstract) before outlining the concepts or principles that a design teaching tool should adhere to. These concepts acknowledge the importance for the tool to reflect the nature of design tasks, facilitate learning and be accessible to all learning types. The paper will then focus on one concept - the nature of design tasks. The subsequent sections will describe an information structure borne from this idea and make mention of a current prototype of the tool. The paper will conclude with a discussion of the strengths of considering this concept.
keywords Design & decision support systems, Architectural education, Computer assisted learning, Design thinking
series DDSS
last changed 2006/08/29 12:55

_id a3c8
id a3c8
authors Verdy Kwee, Dean Bruton, Antony Radford
year 2006
title Visual Expressiveness in Educative Architectural Animations
source Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia. 2006, Kuala Lumpur, Malaysia November 29 - December 02, 2006
summary Consider the current graphic capabilities of multimedia authoring tools. Many information technologies have been exploited to the fullest in the gaming and advertising industries. As far as educational materials produced to explain outstanding architectural and many heritage works, most publications still rely on print media. While much digital information has been propagated online through the Internet (and a few CD-ROM formats could also be found) the techniques of delivery have yet to take advantage of potential technologies, preferring only to digitally replicate and hyperlink the structure and content found in their printed cousins. The reason for this slow adoption is not clear and paradoxical since our society places abundant emphasis and stresses the importance of education over games. However, it seems that the industry and, more importantly, the architecture discipline themselves do not appear to promote architectural visualisations as a significant contributor to the education and learning process. Therefore, educative architectural information visualisation may have to set itself apart, especially to generate growth and interest in this area.

This paper does not deal with the technical aspects of visualisation creation processes but proposes to emphasise architectural visualisations – animations, in particular - as a heightened form of art that could be approached with grammatical lens more than merely a technical exercise that aims to serve an outcome or an industry as they are often perceived now. Digital architectural visualisations and their delivery techniques can be expanded much more as an artistic (architectural) expression like architectural writings are to authors, games to game designers. Although differences could be identified, there are numerous lessons that can be drawn from other forms of art to propel architectural visualisations to a new level beyond those seen in real-estate websites, architectural practices and most students’ works in reputed educational institutions.

Architectural information is peculiar to each building. In order to explicate the essences of architectural works (i.e. the vocabularies, designer’s intents, etc), in all fairness, their presentations cannot be generically produced and uniformly adapted. What one technique and approach could successfully achieve in explaining one building cannot exactly be re-applied to another building with the same expected results. Forms, scales, circulation paths, lighting assignments, designer’s intents, other information (and types) to be delivered differ from one building to another. As such, executions are also wide open to be explored to not only address the practical issues but also to express the intentions of the author/s or director/s to strengthen the architectural narratives.

This paper highlights and illustrates by examples, specifically in architectural flythroughs/animations, considerations that need to be addressed in order that the results would serve as an artistic/architectural expression with a degree of educative substance.

keywords Educative, education, animation, flythrough, expression, grammar, art,
series other
type short paper
email
more http://portal.acm.org/citation.cfm?id=1174429.1174461&coll=GUIDE&dl=%23url.coll
last changed 2007/01/04 00:14

_id ddss2006-hb-293
id DDSS2006-HB-293
authors Wei Peng and John S. Gero
year 2006
title Concept Formation in a Design Optimization Tool
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 293-308
summary This paper presents how a situated agent model can wrap around a design optimization tool and construct concepts from interaction between the agent, the design problem and the use of the tool. The agent develops its structure and behaviour specific to what it is confronted with - its experience. As a consequence, designers can integrate their expertise with the learning results from the agent to develop design solutions. We present preliminary results.
keywords Situated agent, Concept formation, Knowledge, Design optimization tool, Design & decision support systems
series DDSS
last changed 2006/08/29 12:55

_id ddss2006-hb-121
id DDSS2006-HB-121
authors Wei Zhu and Harry Timmermans
year 2006
title Exploring Heuristics Underlying Pedestrian Shopping Decision Processes - An application of gene expression programming
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 121-136
summary Most analytical pedestrian behavior researches use utility-maximizing models and have paid less attention to models based on alternative behavioral theories such as bounded rationality. Consequently, there is a lack of deeper explorations into the decision processes of pedestrians. This lack of such alternative models may also be the result of inappropriate methods to estimate such models. For this reason, the paper first introduces a modeling platform GEPAT which has the ability to estimate parallel functions using a multi-gene-sectional chromosome structure and to facilitate building models using processors emulating simple decision mechanisms. The going-home decision of pedestrians in Wang Fujing Street is taken as an example to illustrate the use of GEPAT. The most important conclusion from a comparison of the MNL, hard cut-off, soft cut-off and hybrid model is that the satisficing heuristic fits better to the problem structure, at least in this case, than the utility-maximizing rule does. This example also shows the flexibility of GEPAT as a modeling toolbox and the power of estimating complex models.
keywords GEPAT, Decision process, Bounded rationality, Satisficing heuristic, Utility maximization, Model comparison
series DDSS
last changed 2006/08/29 12:55

_id ecaade2010_054
id ecaade2010_054
authors Wurzer, Gabriel; Fioravanti, Antonio; Loffreda, Gianluigi; Trento, Armando
year 2010
title Function & Action: Verifying a functional program in a game-oriented environment
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.389-394
doi https://doi.org/10.52842/conf.ecaade.2010.389
wos WOS:000340629400041
summary The finding of a functional program for any kind of building involves a great amount of knowledge about the behavior of future building users. This knowledge can be gathered by looking at relevant building literature (Adler, 1999; Neufert and Neufert, 2000) or by investigating the actual processes taking place in similar environments, the latter being demonstrated e.g. by (Schütte-Lihotzky, 2004) or new functionalist approaches of the MVRDV group (Costanzo, 2006)). Both techniques have the disadvantage that the architect might assume a behavior which is seldom experienced in real life (either through lack of information or by failing to meet the building user’s expectations). What is needed is a verification step in which the design is tested on real users. We have devised a game-like environment (Figure 1a) in which it is possible to capture the behavior of future building users in order to verify the relevance of the design even at a very early stage. As result of applying our approach, we can find previously overlooked usage situations, which may be used to further adapt the design to the user’s needs.
keywords Requirements checking; Participative design
series eCAADe
email
last changed 2022/06/07 07:57

_id ddss2006-pb-169
id DDSS2006-PB-169
authors Zhenjiang Shen, Mitsuhiko Kawakami, and Ping Chen
year 2006
title Study on a Decision Support System for Large-Scale Shopping Centre Location Planning Using a Multi-Agent System
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 169-184
summary Multi-agent system as a bottom-up approach has been shown powerful in better understanding processes of urban development and growth. Most of them are approaching from economic theory and social behaviours but urban planning. This paper proposes an alternative approach to urban simulation that combines urban planning with agents' behaviour in multi-agent modelling thus to make scenarios analysis more reasonable particularly for decision based on urban land use plan. This paper discusses the approach as a computer simulative solution of a new large-scale shopping centre location for most regional cities in Japan where commercial heart of inner city is facing decline. We postulate that policy decision makers can get better understanding of the policies' impact on inner city commercial environment under different scenarios through computer experimentation.
keywords Inner city decline, Planning regulations, Planning policy, Agent
series DDSS
last changed 2006/08/29 12:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_811112 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002