CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 612

_id a126
id a126
authors Finucane E, Derix C and Coates P
year 2006
title Evolving Urban Structures using Computational Optimisation
source Proceedings of the Generative Arts conference, Milan, 2006
summary This paper investigates the use of computer analogies for naturally inspired optimisation techniques as an aid to developing the site layout and massing for the new World Trade Centre development in Pristina Kosovo, which is being designed and developed by 4M Group architectural company, in conjunction with the Advanced Modelling Group Aedas. The development of a genetic algorithm will incorporate various techniques, that have been developed in the field of multi-objective optimisation, to create three dimensional massing models, and site layout solutions which partially fulfil the Prisina brief requirements, which are taken from specifications created by 4M Group. Genetic algorithms are based on natural evolutionary principles which are explained in this paper. It will incorporate Pareto concepts to manage the optimisation of the various objective functions. For example, these will include volume and position of units, which will ensure that the different and sometime conflicting needs of the site are balanced throughout the optimisation. This type of problem is often known as an NP-complete (non-determinate polynomial time) problem. This will provide architects and planners with a number of Pareto optimised site massing solutions as an aid to the design process. An initial investigation into the specifics of the Pristina site requirements, will be followed by an investigation into the the genetic algorithm which is created in Visual Basic for Applications (VBA) linked with AutoCAD as the graphical output of the code. The embryology (development) of the various solutions from the genetic information incorporates an ‘ant’ pheromone trail model, which simulates the action of ants during food foraging, as a tool for initial route planning within the site. Diffusion and cellular automata are used during the development of the solution to construct the massing for the site.
keywords urban planning, evolutionary algorithms, pareto optimization, Lindenmayer systems, ant-colony optimization, cellular automaton
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 18:33

_id caadria2006_179
id caadria2006_179
authors KEATRUANGKAMALA K., NILKAEW P.
year 2006
title STRONG VALID INEQUALITY CONSTRAINTS FOR ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 179-185
doi https://doi.org/10.52842/conf.caadria.2006.x.w5d
summary In the past decades, many attempts have been made to solve the challenging architectural layout design problem such as non-linear programming and evolutionary algorithm (Michalek and Papalambros, 2002). The Mixed Integer Programming (MIP) (Kamol and Krung, 2005) was recently developed to find the global optimal solution. However, the problem can be shown to belong to the class of NP-hard problem (Michalek and Papalambros, 2002). Hence, only the small instances of the problem can be solved in a reasonable time. In order to deal with large problem sizes, this paper utilizes the strong valid inequalities (George and Laurence). It cut off the infeasible points in the integral search space by formulated the disconnected constraints involved with line configurations of three rooms. It is shown to significantly increase the computational speed to more than thirty percents. This exhibits the practical use of the MIP formulation to solve the medium size architectural layout design problems.
series CAADRIA
email
last changed 2022/06/07 07:49

_id fcb4
id fcb4
authors Loemker, Thorsten Michael
year 2006
title Solving Revitalization-Problems by the Use of a Constraint Programming Language
source IKM 2006, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, July 2006
summary This research focuses on an approach to describe principles in architectural layout planning within the domain of revitalization. With the aid of mathematical rules, which are executed by a computer, solutions to design problems are generated. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a problem, an exemplary method will be described to solve such problems in architectural layout planning. To avoid conflicts relating to theoretical subtleness, a customary approach adopted from Operations Research has been chosen in this work [1]. In this approach, design is a synonym for planning, which could be described as a systematic and methodical course of action for the analysis and solution of current or future problems. The planning task is defined as an analysis of a problem with the aim to prepare optimal decisions by the use of mathematical methods. The decision problem of a planning task is represented by an optimization model and the application of an efficient algorithm in order to aid finding one or more solutions to the problem. The basic principle underlying the approach presented herein is the understanding of design in terms of searching for solutions that fulfill specific criteria. This search is executed by the use of a constraint programming language.
keywords Revitalization, Optimization, Constraint Programming, OPL
series other
type short paper
email
more http://euklid.bauing.uni-weimar.de/ikm2006-cd/data/templates/papers/f26.pdf
last changed 2008/10/13 14:02

_id ascaad2006_paper7
id ascaad2006_paper7
authors Lömker, Thorsten M.
year 2006
title Designing with Machines: solving architectural layout planning problems by the use of a constraint programming language and scheduling algorithms
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary In 1845 Edgar Allan Poe wrote the poem “The Raven”, an act full of poetry, love, passion, mourning, melancholia and death. In his essay “The Theory of Composition” which was published in 1846 Poe proved that the poem is based on an accurate mathematical description. Not only in literature are structures present that are based on mathematics. In the work of famous musicians, artists or architects like Bach, Escher or Palladio it is evident that the beauty and clarity of their work as well as its traceability has often been reached through the use of intrinsic mathematic coherences. If suchlike structures could be described within architecture, their mathematical abstraction could supplement “The Theory of Composition” of a building. This research focuses on an approach to describe principles in architectural layout planning in the form of mathematical rules that will be executed by the use of a computer. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a design problem, an exemplary method will be described to solve problems in architectural layout planning. Two problem domains will be examined: the design of new buildings, as well as the revitalization of existing buildings. Mathematical and syntactical difficulties that arise from the attempt to extract rules that relate to the process of building design will be pointed out. To avoid conflicts relating to theoretical subtleness a customary approach has been chosen in this work which is adopted from Operations Research. In this approach design is a synonym for planning, which could be described as a systematic and methodical course of action for the analysis and solution of current or future problems. The planning task is defined as an analysis of a problem with the aim to prepare optimal decisions by the use of mathematical methods. The decision problem of a planning task is represented by an optimization model and the application of an efficient algorithm to aid finding one or more solutions to the problem. The basic principle underlying the approach presented herein is the understanding of design in terms of searching for solutions that fulfill specific criteria. This search will be executed by the use of a constraint programming language, which refers to mathematical as well as to integer and mixed integer programming. Examples of architectural layout problems will be presented that can be solved by the use of this programming paradigm. In addition to this, a second programming approach resulting from the domain of resource-allocation has been followed in this research. It will be demonstrated that it is as well possible, to aid architectural layout planning by the use of scheduling algorithms.
series ASCAAD
email
last changed 2007/11/27 08:22

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2006_e165b
id sigradi2006_e165b
authors Angulo, Antonieta
year 2006
title Optimization in the Balance between the Production Effort of E-learning Tutorials and their related Learning Outcome
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 122-126
summary This paper provides evidence on the level of media richness that may be cost effective in the development of e-learning tutorials for teaching and learning computer visualization techniques. For such a purpose the author provides an analysis of low-cost / high-impact media rich products, the effort and cost required in their development and the measurement of related learning outcomes. Circa twenty years of R&D of multimedia and hypermedia applications for instruction have demonstrated the benefits of communicating relevant information to learners using engaging media. Based on this evidence, this paper assumes that due to the cognitive style of design students, the instructional packages for learning computer techniques for design visualization that are rich in media content, tend to be more effective. Available visualization technologies make the development of e-learning tutorials feasible and apparently the logical way to implement our instructional packages. However the question in the development of e-learning tutorials becomes a more strategic one when we are called to reach a level of optimization between producing a package with a basic standard, namely; text & still-graphic based tutorials, or a state-of-the-art package that is based on video demonstrations (more than enough?) that can accommodate the students’ learning requirements and also our production costs. The costs include the human resources (instructor, producers, assistants and others) and the material resources (hardware and software, copies, and others) involved in the creation of the e-learning tutorials. The key question is: What is good enough, and what is clearly superfluous? In order to confirm our hypothesis and propose a relevant balance between media richness and learning effectiveness, this paper describes an experiment in the use of two different levels of media richness as used to deliver instructions on the production of computer animations for design visualization. The students recruited for this experiment were fairly familiarized with the use of 3D modeling concepts and software, but had no previous knowledge of the techniques included in the tutorials; in specific; camera animation procedures. The students, separated in two groups, used one of the two methods; then they proceeded to apply their newly acquired skills in the production of an animation without using the help of any external means. The assessment of results was based on the quality of the final product and the students’ performance in the recall of the production procedures. Finally an interview with the students was conducted on their perception of what was accomplished from a metacognitive point of view. The results were processed in order to establish comparisons between the different levels of achievement and the students’ metacognitive assessment of learning. These results have helped us to create a clear set of recommendations for the production of e-learning tutorials and their conditions for implementation. The most beneficial characteristics of the two tested methods in relation to type of information, choice of media, method of information delivery, flexibility of production/editorial tools,! and overall cost of production, will be transferred into the development of a more refined product to be tested at larger scale.
keywords e-learning tutorials; media richness; learning effectiveness; cognitive style; computer visualization techniques
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e070c
id sigradi2006_e070c
authors Cardoso, Daniel
year 2006
title Controlled Unpredictability: Constraining Stochastic Search as a Form-Finding Method for Architectural Design
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 263-267
summary Provided with a strict set of rules a computer program can perform the role of a simple designer. Taking advantage of a computer’s processing power, it can also provide an unlimited number of variations in the form while following a given set of constraints. This paper delineates a model for interrelating a rule-based system based on purely architectural considerations with non-deterministic computational procedures in order to provide controlled variations and constrained unpredictability. The experimental model consists of a verisimilar architectural problem, the design of a residential tower with a strict program of 200 units of different types in a given site. Following the interpretation of the program, a set of rules is defined by considering architectural concerns such as lighting, dimensions, circulations, etc. These rules are then encoded in a program that generates form in an unsupervised manner by means of a stochastic search algorithm. Once the program generates a design it’s evaluated, and the parameters on the constraints are adjusted in order to produce a new design. This paper presents a description of the architectural problem and of the rule building process, images and descriptions of three different towers produced, and the code for the stochastic-search algorithm used for generating the form. The succesful evolution of the experiments show how in a computation-oriented design process the interpretation of the problem and the rule setting process play a major role in the production of meaningful form, outlining the shifting role of human designers from form-makers to rule-builders in a computation-oriented design endeavour.
keywords Architectural Design; Stochastic; Random; Rule-based systems; Form-generation
series SIGRADI
email
last changed 2016/03/10 09:48

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ddss2006-hb-309
id DDSS2006-HB-309
authors John S. Gero and Udo Kannengiesser
year 2006
title A Framework for Situated Design Optimization
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 309-324
summary This paper presents a framework for situated design optimization that expands the traditional view of design optimization. It is based on the notion of interaction providing the potential for modifications of various aspects of the optimization process: problem formulation, the optimization tool, the designer and ultimately the result. In contrast to other approaches, these modifications can drive further interactions within the same optimization process. We use parts of the situated function-behaviour-structure (FBS) framework as an ontological basis to describe the effects of intertwined interactions and modifications on the state space of ongoing optimization processes.
keywords Design optimization, Situatedness
series DDSS
last changed 2006/08/29 12:55

_id 2006_804
id 2006_804
authors Lömker, Thorsten M.
year 2006
title Non-Destructive Floor Space Relocation with the Aid of a Constraint Programming Language
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 804-807
doi https://doi.org/10.52842/conf.ecaade.2006.804
summary This research focuses on an approach to describe principles in non-destructive floor space relocation within the domain of revitalization. With the aid of mathematical rules, which are executed by the use of a computer, solutions to floor space relocation problems are generated. Provided that “design” is in principle a combinatorial problem, i.e., a constraint-based search for an overall optimal solution, an exemplary method is described to solve such problems.
keywords Revitalization; Optimization; Constraint Programming; OPL
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2006_237
id caadria2006_237
authors N.BILORIA, K.OOSTERHUIS, C. AALBERS
year 2006
title DESIGN INFORMATICS: (A case based investigation into parametric design, scripting and CNC based manufacturing techniques)
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 237-244
doi https://doi.org/10.52842/conf.caadria.2006.x.q9e
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for envisaging complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This design-research approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. The hence extorted ‘point cloud’ configuration serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed script-routines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct hence enabling timely and effective construction of the conceptualized form.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2006_e151c
id sigradi2006_e151c
authors Neumann, Oliver and Schmidt, Daniel
year 2006
title CNC Timber Framing – Innovative Applications of Digital Wood Fabrication Technology
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 304-307
summary The discourse on depleting natural resources and compromised environments have led to extended research on sustainable designs methods, building practices and materials. Beyond the actual performance of building products and components, research on sustainable building increasingly focuses on the long-term effects of the production, application and life cycle of building materials on the natural environment, human inhabitation and quality of life. Computer aided manufacturing technologies play a significant role not only in the transformation of design and building methods, but also in an extended discourse on cultural development. Globally available technologies connect the design and building process to a broad range of long-term ecological factors by creating a correlation between "the emergent political, economical and social processes and … architectural techniques, geometries and organization." Through this interrelationship to economy and culture, technology and its applications are also directly related to notions of place and territory as well as to fundamental ideas of ecology. The collaborative research and design study for an outdoor theater roof structure at the University of British Columbia Malcolm Knapp Research Forest at Maple Ridge, B.C., Canada, focuses on the use of digital media in prefabrication and material optimization. By utilizing small square section timber and minimizing the use of alienating connectors the research on the wood roof structure illustrates the potential of a design culture that seeks innovation in a broader understanding of ecology routed in regional culture, environmental conditions, economy and tradition. Labor intensive manufacturing techniques are redefined aided by computer controlled machines and virtual modeling of complex geometries is translated into simple operations. The result is a more sensible and accurate response to the place’s demands. In order to generate innovative design interventions that make a constructive long-term contribution to the preservation, maintenance and evolution of the environment, design needs to be based on a comprehensive understanding of its context and the distinctive qualities of the materials used. Following the example of the outdoor roof structure, this paper aims to define innovative design as work that resonates at the intersection of the fields of technology, material science, manufacturing processes, techniques of assembly and context that constitute the expanded context or complex ecology that projects need to engage. It is in design research studies like for the outdoor theater roof structure with focus on CNC wood fabrication technologies that the common design and building discourse is put to question, boundaries are explored and expanded and the collective understanding is improved towards ecological design.
keywords CNC Wood Fabrication; Design Innovation; Ecology
series SIGRADI
email
last changed 2016/03/10 09:56

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
doi https://doi.org/10.52842/conf.acadia.2006.230
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id sigradi2006_c017c
id sigradi2006_c017c
authors de la Barrera Poblete, Carlos Ignacio
year 2006
title Algoritmos Evolutivos como Modelo Propositivo de Diseño [Evolutionary Algorithms for Supple Design Systems]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 273-277
summary The study uses a repetitive rule of geometric and arithmetical expression, cradle in the movement of the horse in the chess, as displacement continued within a well-known field. Each jump is an iteration of the algorithm, and does that a gene initiator mute, varying its genetic information in its chromosome. This Evolutionary Algorithm is used like an explorer of the space, which tends to move according to a pre-established atmosphere in the programming. The Evolutionary Algorithm imitates the biological evolution as strategy to solve design problems. Its unexpected answers and without direct intervention of a designer, is a family of forms with small variations among them, where each member is a possible solution to the problem. The Generative Calculation depends on its rules, and in this sense he is as genuine as the behaviour of any natural biological system.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 7987
id 7987
authors Dimitrios Makris, Ioannis Havoutis, Georges Miaoulis, Dimitri Plemenos
year 2006
title MultiCAD – MOGA A System for Conceptual Style Design of Buildings
source Conference Proceedings of the 9th 3IA (2006) International Conference on Computer Graphics and Artificial Intelligence, p73-84
summary The synthesis of the three-dimensional morphology of a building is one of the most important tasks in architecture. Space planning and morphology are of the most interesting and complex of architectural design problems. Architectural design is guided by the constraints on the spatial composition and the morphology of the final building. During the conceptual phase problems are characterised by fuzziness and complexity. Building requirements are ill-defined and contradictory. The designer should explore the solution space for alternative building solutions while refining requirements and style preferences. In this paper we present the development and implementation of an Evolutionary Declarative Design system prototype for the aid of conceptual style design of buildings. The system is a specific MultiCAD prototype system including architectural knowledge, architectural style and a multi-objective genetic algorithm. Two design cases are presented for two different architectural styles. The applicability and efficiency of the system prototype are discussed.
keywords declarative modelling, evolutionary design, multi-objective genetic algorithms, architectural conceptual design, constraints
series other
type normal paper
email
more http://3ia.teiath.gr/3ia_previous_conferences_cds/2006/Papers/Full/Makris_8.pdf
last changed 2007/11/29 15:55

_id ddss2006-pb-51
id DDSS2006-PB-51
authors Dino Borri, Giovanni Circella, Michele Ottomanelli, and Domenico Sassanelli
year 2006
title Optimization of Choice Modelling in Complex Urban Contexts - Applications in planning for sustainable development
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 51-66
summary This paper focuses on the capabilities of choice models in assisting planners in the development of transport policies and interventions for strategic transport planning for urban systems. Models are looked at as part of a decision support system for the development of transport measures for sustainable mobility. The use of participation is looked at as a tool for the understanding of the real needs in terms of mobility in the complex contemporary society and for the construction of the future transport scenarios and transport alternatives.
keywords Choice modelling, Behavioural models, Uncertainty, Sustainable development
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e172c
id sigradi2006_e172c
authors Donath, Dirk and González Böhme, Luis Felipe
year 2006
title A Constraint-Based Building Bulk Design Support
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 278-282
summary We introduce an architecture practice-oriented implementation strategy of constraint-based methods called BDS (Building Bulk Design Support) to supporting bulk analysis during the architectural programming phase. We examine the optmization problem of site coverage and building massing according to a set of standard planning and zoning regulations, and try a problem solving approach based on the paradigm of constraint satisfaction problems. The case study, which is focused on the paticipatory planning of very low-income dwellings within the Latin American context, serves as testbed for a prototypical application of the adopted methodology. The BDS constitutes a novel approach on computer-aided bulk analysis, regarding this particularly relevant context of application. In the case of participatively planned low-income housing projects, efficiency regarding time and cost of planning directly affects dwellers’ quality of life, whereas elementary programming tasks such as bulk analysis lack appropriate state-of-the-art technological support. Traditional architectural planning methods demand a large domain-specific knowledge base and skillful planners. A planning process, which is mainly driven by the formulation of planning-relevant constraints and sets of solution alternatives, suggests to avoid architects’ traditional procedure of: 1. Create an (yet not necessarily valid) instance of the eventual design solution by directly choosing specific values for its shape parameters. 2. Evaluate its validity by confronting the designed model to a set of applicable constraints, which have to be satisfied. Instead, the constraint-based design methodology poses a search procedure that operates in a space of pertinent constraint sets. A computer-aided interactive search procedure to find more valid design solution alternatives in less time and with less effort is particularly qualified to supply efficient support for participatory planning activities carried out between dwellers and planners. The set of solutions for a building-bulk design problem is constrained by both a large complex system of planning and zoning regulations and the geometry of the eventual design solution itself. Given a considerable amount of such regulations, a regular size geometric constraint satisfaction system proved to be capable of providing a highly efficient, interactive modeling and evaluation tool for the formulation in real time of valid solution alternatives for an ordinary building-bulk design problem. A BDS implementation will constitute one system module of a larger integrated system model called Esther. A BDS tool shall interact with other functional modules, like e.g. the FLS (Floor plan Layout Support), which also uses constraint-based design methods.
keywords constraint-based design; bulk analysis; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_346126 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002