CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ascaad2006_paper12
id ascaad2006_paper12
authors Katodrytis, George
year 2006
title The Autopoiesis and Mimesis of Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The use of digital technology in architecture has proven to be more assertive than originally thought: it has reconditioned the nature of the design process, and established new practices and techniques of fabrication. The 21st century began with the technology of art. There is a new responsiveness to the reading and understanding of digital space, which is characterized by complexity and the uncanny. Recent applications in digital technology show inquisitiveness in the contentious subject Genetic Algorithms. This new architectural process is characterized by two main shifts: from poiesis (or poetry) to autopoiesis, and from authenticity to mimesis. Since evolutionary simulations give rise to new forms rather than design them, architects should now be artists and operators of both Inventive and Systematic design. Inventive design: The digital media should bring about poiesis (poetry). Digital spaces reveal and visualize the unconscious desires of urban spaces and bring forth new dreamscapes, mysterious and surreal. This implies a Freudian spatial unconscious, which can be subjected to analysis and interpretation. “Space may be the projection or the extension of the physical apparatus”, Freud noted1. Space is never universal, but subjective. A space would be a result of introjection or projection – which is to say, a product of the thinking and sensing subject as opposed to the universal and stable entity envisaged since the Enlighten. There is a spatial unconscious, susceptible to analysis and interpretation. Systematic Design: Digital media should bring about an autopoiesis. This approach calls into question traditional methods of architectural design – which replace the hierarchical processes of production known as “cause and effect” - and proposes a design process where the architect becomes a constructor of formal systems. Will the evolutionary simulation replace design? Is metric space dead? Is it replaced by the new definition of space, that of topology? The new algorithmic evolutionary conditions give architecture an autopoiesis, similar to biological dynamics. The use of algorithms in design and fabrication has shifted the role of the architect from design to programming. Parametric design has introduced another dimension: that of variation and topological evolution, breaking the authentic into the reused. Architecture now is about topology than typology, variation than authenticity, it is mimetic than original, uncanny and subconscious than merely generic. In a parallel universe, which is both algorithmic and metaphysical, the modeling machine creates a new abstraction, the morphogenesis of the “new hybrid condition”. The emphasis of the exploration is on morphological complexity. Architecture may become – paradoxically - rigorous yet more uncanny and introverted.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_714
id 2006_714
authors Kona, Silika Rahman and Saleh Uddin
year 2006
title Movement in Architecture - An Analytical Approach Towards Organic Characteristics
doi https://doi.org/10.52842/conf.ecaade.2006.714
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 714-719
summary Nature is the fundamental and recurring inspiration of organic architecture. Living organisms, both in their outward forms and in their inner structures, offer endless ideas and concepts for design. Organic architecture works with metamorphosis (the process of growth and change), the notion of “design from within”. Why should architecture be lifeless and static? Here, Movement, a unique quality of living organism is used to contribute to architecture. We cannot make a new life but we can take the characteristics to make changes in our environment, seeking not to imitate nature’s appearance, but instead to imaginatively apply its profound principles. The focus of this paper is to examine and categorize the different kinds of movement that exist in nature, understanding how their purpose can be effectively used in architecture. The topic explores techniques of living organisms used for function and defense and discusses possible implementation in architecture. Movement has the potentiality to introduce flexibility, ecological efficiency and building defense through deformable, transportable, shape shifting and morphing forms.
keywords Organic Characteristics; Movement
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia06_278
id acadia06_278
authors Mathew, Anijo
year 2006
title Aesthetic Interaction A Model for Re-thinking the Design of Place
doi https://doi.org/10.52842/conf.acadia.2006.278
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 278-291
summary We live in a landscape of digital information and communication. Digital technology finds pervasive application in many aspects of modern habitable spaces— environmental control systems, internet based systems for information exchange, cellular systems for instant communication, and the list goes on. In fact, recent Intel studies show that every day we encounter at least 150 different computing devices in our living environments. As computing initiatives evolve intelligent devices that work in the background of our day to day living, several questions arise about how we interact with these devices. The design of “smart” places will eventually involve the seamless integration of both the physical and virtual. Such interventions will lead to a transformation in the way we design. Architects will increasingly find themselves using the computer in design as opposed to design. Over the last few years our lab has been working on several projects, from the level of a room to the level of urban design, that use embedded interactivity and computing as part of the design. This paper describes three such projects, completed at different times, which deal with different problems and the overall impact of computing on the way the designs were developed. The description and evaluation of these projects will be used to develop a theory for the use of pragmatist aesthetics for “information interchange” within architectural design. In short, the paper will explore the evolution of Computer “Aided” Design from a model for designing architecture to a model for designing computing within architecture through aesthetic interaction.
series ACADIA
email
last changed 2022/06/07 07:58

_id 2006_392
id 2006_392
authors Papaconstantinou, Georgios
year 2006
title Screen Space: Navigation and Interactivity
doi https://doi.org/10.52842/conf.ecaade.2006.392
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 392-398
summary This paper considers the introduction of both human-computer inteface and interactive multimedia design in the architectural education and practice. The development of information and communication technologies offers to architects new tools of design as well as new areas of architectural practice. What is more decisive is the change of mentality in the way of conceiving space and of the design procedure itself. The question posed is if drawing conventions are changing and in what way? The paper attempts to establish analogies between the recent introduction into architectural thought of notions such as the human body movement, events and scenarios with the development of navigation and interaction principles and conventions in the computer world. The study of human-computer interface contributes in the understanding of the major role of the computer screen as a point of convergence of different representational forms and the emergence of new ones proper to the digital culture.
keywords Multimedia; interface design; interactivity; navigation
series eCAADe
type normal paper
email
last changed 2022/06/07 08:00

_id caadria2006_169
id caadria2006_169
authors RABEE M. REFFAT
year 2006
title A COMPUTATIONAL SYSTEM FOR ENRICHING DISCOVERY IN ARCHITECTURAL DESIGN
doi https://doi.org/10.52842/conf.caadria.2006.x.a3l
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 169-177
summary This paper presents a computational system for enriching design discovery in the external 2D representation of architectural plans. Enriching discovery is achieved through an interpretative search process that involves emergent findings. The developed computational system employs a twofold discovery process, generative phase and an interpretative or explorative phase. In the generation phase the system allows designers to depict an initial building design in the form of 2D plans as a set of lines. The system recognizes possible components of the initial design by generating different forms of bounded shapes that are both explicit and implicit using the Hamiltonian circuit approach. In the interpretation phase the discovery process using the quest mechanism is invoked by selecting a geometrical semantic identified in the recognized shapes to generate possible alternative interpretations of the complete representation of initial design. This plays an important role in enriching discovery in the architectural design of buildings and provides a set of new moves and directions for the designer to pursue.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_852
id 2006_852
authors Tidafi, Temy and Ivanka Iordanova
year 2006
title Experimental Approach in an Architectural Design Studio - How Digital Technologies Could Change a Design Process
doi https://doi.org/10.52842/conf.ecaade.2006.852
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 852-858
summary This article communicates results of an experimental pedagogical strategy aiming at both, introducing and taking advantage of new technologies in an architectural design studio. One of the reasons for the notorious unfriendliness of CAD software to the design process comes from the attempt to imitate traditional pen and paper design on the computer. While the whole process could be completely different when performed in a digital environment offering powerful form generation and knowledge modelling possibilities. the proposed teaching method is based on the following principles: (1) emphasis on new methods of designing made possible by the use of computer; (2) communicating the design process, and not only the final result; (3) exploring parametric design for generation of different formal expressions of a design concept; (4) using visual programming to create inter-object relations, etc. A comparison of this experimental approach to other approaches used in design studios (digital or traditional), proves that the architectural results obtained are largely related to the chosen medium and the tools of work. In our opinion, this teaching approach proves to be promising for introducing considerable qualitative changes in the architectural profession, and this way in our built environment as well.
keywords digital design studio; teaching the process; parametric models; visual programming
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2006_e159b
id sigradi2006_e159b
authors Barrow, Larry
year 2006
title Digital Design Pedagogy - Basic Design - CADCAM Space Box Exploration
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 127-130
summary This proposed paper will highlight the work of a “pre-architecture” graduate student’s work produced in a “Digital Design II” course in Spring 06. This student has a bachelor’s degree in Architectural Technologies and hopes to attend a “professional” degree program in architecture after completing our Master of Science degree program. The student entered our “pre / post-professional” graduate program as a means of learning more about design, technology and architecture. This provided a rare opportunity to do “research” in the area of digital technology in the early formative phases of a new architecture / design students development. The student chose to study “shadows” as a means of design inquiry. The primary focus of the work was the study of various “4” x 4” x 4” “space-cubes.” The student was given various “design” constraints, and “transformative” operations for the study of positive-negative space relationships, light+shadows, and surface as a means of gaining in-sight to form. The CADCAM tools proved to be empowering for the student’s exploration and learning. With the recent emergence of both more user-friendly hardware and software, we are seeing a paradigm shift in design “ideation.” This is attributed to the evolving human-computer-interface (HCI) that now allows a fluidic means of creative design ideation, digital representation and physical making. Computing technology is now infusing early conceptual design ideation and allowing designers, and form, to follow their ideas. The argument will be supported with primary evidence generated in our pedagogy and research that has shown the visualization and representational power of emerging 2D and 3D CADCAM tools. This paper will analyze the basic “digital design” process used by the writer’s student. Architectural form concepts, heretofore, impossible to model and represent, are now possible due to CADCAM. Emerging designers are integrating “digital thinking” in their fundamental conceptualization of form. These creative free-forms are only feasible for translation to tectonic form using digital design-make techniques. CADCAM tools are empowering designers for form exploration and design creativity. Current computing technology is now infusing the creative design process; the computer is becoming a design “partner” with the designer and is changing form and architecture; thus, we are now seeing unprecedented design-make creativity in architecture.
keywords Basic Design; CADCAM; Digital Design; Virtual 3D Models; Physical 3D Printed Models
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia06_150
id acadia06_150
authors Boza, Luis Eduardo
year 2006
title (Un) Intended Discoveries Crafting the Design Process
doi https://doi.org/10.52842/conf.acadia.2006.150
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 150-157
summary Computer Numeric Controlled (CNC) fabrication machineries are changing the way we design and build. These technologies have increased productivity through greater efficiencies and have helped to create new forms of practice, including increased specializations and broader collaborative approaches. (Kieran Timberlake 2003: 31). However, some argue that these technologies can have a de-humanizing effect, stripping the human touch away from the production of objects and redistributing the associated skills to machines. (Dormer 1997: 103). The (Digital) Craft studio explored the notions of technology and craft to understand how and when designers should exploit the tools employed (both the hand and the machine) during the design and production processes.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
doi https://doi.org/10.52842/conf.acadia.2006.148
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e033b
id sigradi2006_e033b
authors Castillo, Tim
year 2006
title Hybrid[s] : new pedagogical applications for designing our evolving spatial environment
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 131-136
summary The continual emergence of new informational and technological systems has impacted our cultural landscape. As society continues to evolve, we are becoming more connected to virtual systems that impact our spatial environment. The awareness and understanding of these invisible forces requires new curricular pedagogies in architectural education. This paper will document an ongoing course that was developed to research new methodologies for working with haptic environments and informational systems. Utilizing a high performance-computing center, students in the class are developing new adaptive intelligent spatial systems that engage a multiplicity of scales. They researched environments for PDA’s (Personal Data Assistance), I-Pods, cellular phones, GPS (Guidance Positioning Systems) and a new immersive virtual dome environment. The goal of the class was to reevaluate how architectural practice in the future will encompass a more holistic approach to both physical and virtual spatial development.
keywords Design tools and methods
series SIGRADI
email
last changed 2016/03/10 09:48

_id sigradi2006_p043d
id sigradi2006_p043d
authors dos Santos Cabral Filho, José and Baltazar do Santos, Ana Paula
year 2006
title Tenda Digital/Digital TENT (Technological Environment for Negotiated Topology) e suas possíveis implicações em contextos sociais [Digital TENT (Technological Environment for Negotiated Topology)]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 346-349
summary This article approaches the social use of digital immersive environments in two different realms. One aiming at the digital training of self-builders involved in participatory design of affordable housing and the other dealing with experimental connection of lowincome communities (favelas) placed at different geographic locations. It first describes the specific digital immersive environment called Digital TENT, developed at IBPA/LAGEAR, which aims to investigate the production of space by means of bodily engagement with images within the perspective of the experience rather than that of the spectacle. Subsequently, it discusses the conceptual basis of the TENT (Technological Environment for Negotiated Topology) as opposed to the CAVE (Cave Automatic Virtual Environment), This discussion is deepened into a critique of the visual representation of space opposed to the possibility of dynamic creation of environments that only happen in present time with peoples' interaction, Such a critique, associated with two social experiences carried out by IBPA/ LAGEAR, leads to the conclusion that the Digital TENT is effective for both supporting visualization processes and spatial negotiation in participatory design, and also as a place for enhancing the very experience.
series SIGRADI
email
last changed 2016/03/10 09:50

_id ijac20064307
id ijac20064307
authors Goldberg, Sergio Araya
year 2006
title Computational Design of Parametric Scripts for Digital Fabrication of Curved Structures
source International Journal of Architectural Computing vol. 4 - no. 3, 99-117
summary This paper explores strategies for building toolchains to design, develop and fabricate architectural designs. It explains how complex curved structures can be constructed from flat standard panels. The hypothesis of this research is that by embedding ruled based procedures addressing generative, variational, iterative, and fabricational logics into early phases of design, both design techniques and digital fabrication methods can merge to solve a recurrent problem in contemporary architectural design, building double curved structures. Furthermore it achieves this using common fabrication methods and standard construction materials. It describes the processes of programming computational tools creating and developing designs to fabricate continuous complex curved structures. I describe this through a series of experiments, using parametric design environments and scripted functions, implementing certain techniques to fabricate these designs using rapid prototyping machines. Comparing different design and fabrication approaches I offer a discussion about universal application of programmed procedures into architectural design.
series journal
last changed 2007/03/04 07:08

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2006_161
id caadria2006_161
authors HERM HOFMEYER, JAN G.M. KERSTENS
year 2006
title FULL 3D STRUCTURAL ZONING OF SPACE: Using a Geometrically Related Reducer and Matrix Coupling
doi https://doi.org/10.52842/conf.caadria.2006.x.x2d
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 161-168
summary Structural zoning is the recognition of forms in spatial designs. It can be used by a structural designer to develop a structural system. This paper will start with the presentation of a proof that neither user action nor a two-dimensional approach -two existing approaches of zoning- are able to recognize all possibilities for the application of a structural design to a spatial design. Only full three-dimensional structural zoning is considered to be an appropriate instrument to give useful solutions. Two new concepts will be presented to overcome problems for three-dimensional zoning: (1) Geometrically Related Reducers and (2) Matrix Coupling. These concepts are first defined in a general form and thereafter the definitions are condensed into a practically applicable format. Both concepts are demonstrated when finding rectangular zones in spatial designs up to 44 separate spatial entities. They are programmed procedurally using the C++ computer language and are used for a comparison between structural designers and computer performance.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ddss2006-hb-85
id DDSS2006-HB-85
authors J.A.M. Borsboom-van Beurden, R.J.A. van Lammeren, T. Hoogerwerf, and A.A. Bouwman
year 2006
title Linking Land Use Modelling and 3D Visualisation - A mission impossible?
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 85-101
summary Additional to the traditional land use maps 3D visualisation could provide valuable information for applications in the field of spatial planning, related to ecological and agricultural policy issues. Maps of future land use do not always reveal the appearance of the physical environment (the perceived landscape) as a result of land use changes. This means that 3D visualisations might shed light on other aspects of changed land use, such as expected differences in height or densities of new volume objects, or the compatibility of these changes with particular characteristics of the landscape or urban built environment. The Land Use Scanner model was applied for the Netherlands Environmental Assessment Agency's 'Sustainability Outlook' to explore land use changes, followed by GIS analyses to asses both the development of nature areas and the degree of urbanisation within protected national landscapes. Since it was felt that 3D visualisation could complement the resulting land use maps, the land use model output was coupled to 3D visualisation software in two different ways: 1) through Studio Max software in combination with iconic representation of the concerned land use types and 2) through 3D components of GIS software. However, the use of these techniques on a national scale level for the generation of semi-realistic 3D animations raised a number of conceptual and technical problems. These could be partly ascribed to the particular format and of the Land Use Scanner output. This paper discusses the methods and techniques which have been used to couple the output of the land use model to 3D software, the results of both approaches, and possible solutions for these problems.
keywords Land use models, 3D visualisation, Policy-making
series DDSS
last changed 2006/08/29 12:55

_id ddss2006-pb-271
id DDSS2006-PB-271
authors Ji-Hyun Lee and Huai-Wei Liu
year 2006
title The Art of Communication: a Collaborative Decision-Making System among Different Industrial Design Stakeholders - The case of the company ASUS
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 271-288
summary Collaboration benefits the process of complex design. However, there are many communication problems among different stakeholders in the domain of industrial design, because the situation of communication and decision-makings for stakeholders is so complicated. To deal with the complexity requires both a web-based collaborative system to communicate and share information immediately, and a multi-agent system (MAS) integrated with KW architecture to possess different levels of competence at performing a particular task. The goal of our system is to integrate a variety of representational methods of transferring knowledge and to communicate among different stakeholders using a single platform. To demonstrate our proposed concepts, we focus on a prototype system for notebook design for the company ASUS, a leading notebook manufacturer based in Taiwan.
keywords Web-based collaborative system, Computer-supported cooperative work, Decision-making, Multi-agent system, Knowledge warehouse
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e149b
id sigradi2006_e149b
authors Kendir, Elif
year 2006
title Prêt-à-Construire – An Educational Inquiry into Computer Aided Fabrication
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 162-165
summary This paper aims to show and discuss the relevance of developing necessary strategies for reintegrating the concept of fabrication into the architectural design process. The discussion will be partly based on the outcome of a graduate architectural design studio conducted in Spring semester 2002-2003. The graduate studio was part of a series of exploratory studies conducted on the nature of architectural design process transformed by information technologies. Preceded by studios investigating cognition and representation, this last studio focused on the concept of fabrication. The overarching aim of the studio series was to put CAD and CAM in context both within the actual architectural design process and within architectural education. The last of this series, which will be discussed within the frame of this paper, has specifically focused on CAM and the concept of fabrication in architecture. In accordance with the nature of a design studio, the research was more methodological than technical. The studio derived its main inspiration from the constructional templates used in dressmaking, which can be considered as an initial model for mass customization. In this context, the recladding of Le Corbusier’s Maison Domino was given as the main design problem, along with several methodological constraints. The main constraint was to develop the design idea through constructional drawings instead of representational ones. The students were asked to develop their volumetric ideas through digital 3D CAD models while working out structural solutions on a physical 1/50 model of Maison Domino. There was also a material constraint for the model, where only specified types of non-structural paper could be used. At this stage, origami provided the working model for adding structural strength to sheet materials. The final outcome included the explanation of different surface generation strategies and preliminary design proposals for their subcomponents. The paper will discuss both the utilized methodology and the final outcome along the lines of the issues raised during the studio sessions, some of which could be decisive in the putting into context of CAD – CAM in architectural design process. One such issue is mass customization, that is, the mass production of different specific elements with the help of CAM technologies. Another issue is “open source” design, indicating the possibility of a do-it-yourself architecture, where architecture is coded as information, and its code can be subject to change by different designers. The final key issue is the direct utilization of constructional drawings in the preliminary design phase as opposed to representational ones, which aimed at reminding the designer the final phase of fabrication right from the beginning. Finally, the paper will also point at the problems faced during the conduct of the studio and discuss those in the context of promoting CAM for architectural design and production in countries where there is no actual utilization of these technologies for these purposes yet.
keywords Education; Fabrication; CAM
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia06_555
id acadia06_555
authors Kudless, A., Vukcevich, I.
year 2006
title Flexible Formwork Research (FPR)
doi https://doi.org/10.52842/conf.acadia.2006.x.r8t
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] p. 555
summary FFR investigates the self-organization of plaster and elastic fabric to produce evocative visual and acoustic effects. Inspired by the work of the Spanish architect Miguel Fisac and his experiments with flexible concrete formwork in the 1960-70s, FFR continues this line of research by exploring aspects of pattern generation and recognition in relation to self-organized form. In line with the theme of the current exhibition, Digital Exchange, the work can be understood as a dialog between physical and digital computation. The form is a result of a negotiation between the digital manipulation of images and the physical deformations of materials under stress. Both digital and physical processes play an equal role in the final form of the plaster tiles.Reflecting on Miguel Fisac’s flexible concrete formwork, there was a desire to investigate the potential for more differentiated patterns while still using the same basic fabrication technique. This was accomplished through the use of a custom-designed script in Rhino that analyzes a given image and translates it into a field of points. These points establish areas of constraint in the elastic membrane of the mould. Through numerous physical tests, the minimum and maximum distances between constraint points was determined and these were entered into the script as limits for the point creation. If the points are too close, large wholes with very thin and weak plaster form whereas if the points are too far apart the amount of elastic deformation is so great that the weight of the plaster can cause failures to occur in the fabric mould. One of the most important aspects of the project is its resonance with the body and our natural attraction and repulsion for certain forms. Through exploring the natural self-organization of material under stress, FFR unintentionally reminds us of our own flesh. The plaster tiles resonate with our own body’s material as it sags, expands, and wrinkles in relationship with gravity, structure, and time.
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia06_064
id acadia06_064
authors Luhan, Gregory A.
year 2006
title Synthetic Making
doi https://doi.org/10.52842/conf.acadia.2006.064
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 64-67
summary Various approaches of virtual and physical modeling have led to a synthetic form of making that is plastic and scalable in nature. This shift from traditional forms of representing and generating architecture now offers a better possibility of full-scale construction and fabrication processes and links transparently to industry. Architects are beginning to dynamically inform the visioning processes of assemblies and design through a range of precise subassemblies. Further to this end, the synthetic techniques and materials are opening up avenues for designers to investigate a range of fibers and fabrics that radically transform light and color renditions, and texture. Investigations in the realm of traditional materials such as stone, wood, and concrete continue to evolve, as do their associated methods of making. As a result of synthetic technologies, architects today have the possibility to work along side industry engineers and professionals to design castings, moldings, patterns, and tools that challenge not only the architectural work of art, but industrial and product design as well. This cultural shift from physical space to virtual space back to physical space and the combination of hand-, digital-, and robotic-making offers a unique juxtaposition of the built artifact to its manufacturing that challenges both spatial conventions and also the levels of precision and tolerance by which buildings are assembled. Traditional forms of documentation for example result typically in discrepancies between the drawn and the actualized which are now challenged by the level of precision and tolerance at the virtual level. It is within this context that leading-edge architects and designers operate today. Yet, how the profession and the academy respond to these opportunities remains an open line of inquiry and addressing these concerns opens up the rich potential enabled through synthetic making.
series ACADIA
email
last changed 2022/06/07 07:59

_id acadia06_461
id acadia06_461
authors Martens, Bob
year 2006
title Exploring the Design and Fabrication of Inflatables: “The Taming of the Shrew”
doi https://doi.org/10.52842/conf.acadia.2006.461
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 461-470
summary The building materials that help designers or architects achieve their goal of defining and enclosing space are usually concrete, steel, glass or wood. For these materials designers have both empirical data gained from experience and at times complex calculation methods enabling them to use them in their designs in a tangible, reckonable and, consequently, almost risk-free manner. It seems obvious that creating a design with well-known building materials will lead to more or less predictable outcomes. This is a good reason for investigating a design process dealing with air-filled building-elements. Architectural structures look completely different when one employs a “building material” which has not been subjected to either detailed investigations or sophisticated calculations. The “Smart_Air” Design Studio was devised to take a closer look at the unusual building material “air,” which we have only just begun to explore, and to make it the centre of a focused design exercise. The objective was to use “air” or, rather, pneumatic technologies, to arrive at structurally sound solutions for enclosing space, which could be considered a “roof” in the widest sense of the term.
series ACADIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_520370 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002