CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id sigradi2006_e151c
id sigradi2006_e151c
authors Neumann, Oliver and Schmidt, Daniel
year 2006
title CNC Timber Framing – Innovative Applications of Digital Wood Fabrication Technology
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 304-307
summary The discourse on depleting natural resources and compromised environments have led to extended research on sustainable designs methods, building practices and materials. Beyond the actual performance of building products and components, research on sustainable building increasingly focuses on the long-term effects of the production, application and life cycle of building materials on the natural environment, human inhabitation and quality of life. Computer aided manufacturing technologies play a significant role not only in the transformation of design and building methods, but also in an extended discourse on cultural development. Globally available technologies connect the design and building process to a broad range of long-term ecological factors by creating a correlation between "the emergent political, economical and social processes and … architectural techniques, geometries and organization." Through this interrelationship to economy and culture, technology and its applications are also directly related to notions of place and territory as well as to fundamental ideas of ecology. The collaborative research and design study for an outdoor theater roof structure at the University of British Columbia Malcolm Knapp Research Forest at Maple Ridge, B.C., Canada, focuses on the use of digital media in prefabrication and material optimization. By utilizing small square section timber and minimizing the use of alienating connectors the research on the wood roof structure illustrates the potential of a design culture that seeks innovation in a broader understanding of ecology routed in regional culture, environmental conditions, economy and tradition. Labor intensive manufacturing techniques are redefined aided by computer controlled machines and virtual modeling of complex geometries is translated into simple operations. The result is a more sensible and accurate response to the place’s demands. In order to generate innovative design interventions that make a constructive long-term contribution to the preservation, maintenance and evolution of the environment, design needs to be based on a comprehensive understanding of its context and the distinctive qualities of the materials used. Following the example of the outdoor roof structure, this paper aims to define innovative design as work that resonates at the intersection of the fields of technology, material science, manufacturing processes, techniques of assembly and context that constitute the expanded context or complex ecology that projects need to engage. It is in design research studies like for the outdoor theater roof structure with focus on CNC wood fabrication technologies that the common design and building discourse is put to question, boundaries are explored and expanded and the collective understanding is improved towards ecological design.
keywords CNC Wood Fabrication; Design Innovation; Ecology
series SIGRADI
email
last changed 2016/03/10 09:56

_id 2006_670
id 2006_670
authors Fricker, Pia and Alexandre Kapellos
year 2006
title Digital Interaction in Urban Structure - Reflection : Six years and still scanning
doi https://doi.org/10.52842/conf.ecaade.2006.670
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 670-673
summary The focus in our elective course for Master Students of Architecture is the following: in parallel to a more traditional way of analysing urban structures, how can the application of multimedia technology, networking and the integration of interactive computer applications lead to a different approach? The objective of our teaching and research project is to find out in what ways urban structure and specific features of a city can be represented by interactive interfaces and the use of CNC technology. Our attitude is based on small-scale approach: the sum of these microanalyses gives us the broader picture, the system or mechanisms of the city. We do not dive into the city but emerge from it. This reflection leads to a new understanding in the organisation of complex urban structures, highlighting and revealing different connections and relationships, thus giving a different final image.
keywords Abstract Types of Spatial Representation; Interaction – Interfaces; Innovative Integration of Multimedia Technology; Digital Design Education
series eCAADe
email
last changed 2022/06/07 07:50

_id 2006_342
id 2006_342
authors Lyon, Eduardo
year 2006
title Component Based Design and Digital Manufacturing - A DfM Model for Curved Surfaces Fabrication using Three Axis CNC Router
doi https://doi.org/10.52842/conf.ecaade.2006.342
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 342-350
summary Through the use of design for manufacturing (DfM) method and looking at the relations between its potential application in architectural production and its implementation using digital manufacturing technologies, we analyze building construction processes and explore, in more detail curved surface fabrication using two dimensional cutting and three dimensional milling processes. Afterwards a DfM model for curved surfaces fabrication using three-axis computer numerical control (CNC) router is proposed. The proposed DfM model relies fundamentally in two supporting factors; the implementation of design heuristics that integrates production knowledge and the availability of some design related to production evaluation metrics. Subsequently, we test and refine the model using structured design experiences. This was accomplished by capturing new design heuristics and detecting useful evaluation metrics for production. In the final part of the research, a refined DfM model was tested in a component design case study. The case study is based on producing a curved surface module on wood for an existing proprietary component based wall system. As a summary, we conceptualize from this top-down development approach to create a design for manufacturing model that integrates design and construction in architecture, based on three possible applications fields: Design processes improvement, building production process improvement, CAD-CAM tools development. Our purpose is to provide better foundational constructs and approaches for integrating design with manufacturing in architecture.
keywords Design for Manufacturing; Design Cognition; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia06_150
id acadia06_150
authors Boza, Luis Eduardo
year 2006
title (Un) Intended Discoveries Crafting the Design Process
doi https://doi.org/10.52842/conf.acadia.2006.150
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 150-157
summary Computer Numeric Controlled (CNC) fabrication machineries are changing the way we design and build. These technologies have increased productivity through greater efficiencies and have helped to create new forms of practice, including increased specializations and broader collaborative approaches. (Kieran Timberlake 2003: 31). However, some argue that these technologies can have a de-humanizing effect, stripping the human touch away from the production of objects and redistributing the associated skills to machines. (Dormer 1997: 103). The (Digital) Craft studio explored the notions of technology and craft to understand how and when designers should exploit the tools employed (both the hand and the machine) during the design and production processes.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
doi https://doi.org/10.52842/conf.acadia.2006.148
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id caadria2006_597
id caadria2006_597
authors CHOR-KHENG LIM, CHING-SHUN TANG, WEI-YEN HSAO, JUNE-HAO HOU, YU-TUNG LIU
year 2006
title NEW MEDIA IN DIGITAL DESIGN PROCESS: Towards a standardize procedure of CAD/CAM fabrication
doi https://doi.org/10.52842/conf.caadria.2006.x.r4i
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 597-599
summary In 1990, due to the traditional architecture design and construction method difficult to build the complicated and non-geometry free-form Fish Structure in Barcelona, architect Frank Gehry started learn from the field of aerospace to utilize CAD/CAM technology in design and manufacture process. He created the free-form fish model in CAD system and exported the digital CAD model data to CAM machine (RP and CNC) to fabricate the design components, and finally assembled on the site. Gehry pioneered in the new digital design process in using CAD/CAM technology or so-called digital fabrication. It becomes an important issue recently as the CAD/CAM technology progressively act as the new digital design media in architectural design and construction process (Ryder et al., 2002; Kolarevic, 2003). Furthermore, in the field of architecture professional, some commercial computer systems had been developed on purpose of standardizes the digital design process in using CAD/CAM fabrication such as Gehry Technologies formed by Gehry Partners; SmartGeometry Group in Europe and Objectile proposed by Bernard Cache. Researchers in the research field like Mark Burry, Larry Sass, Branko Kolarevic, Schodek and others are enthusiastic about the exploration of the role of CAD/CAM fabrication as new design media in design process (Burry, 2002; Schodek et al., 2005; Lee, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id 2006_352
id 2006_352
authors Fricker, Pia and Oskar Zieta
year 2006
title CNC Compliant Methods of Design - Understanding Technology
doi https://doi.org/10.52842/conf.ecaade.2006.352
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 352-357
summary This paper investigates new design methods, showing the experimental use of new digital tools, CNC-techniques and technologies so as to expand the definition of contemporary architecture. This investigation of new technologies extends the traditional practice of architectural design to include issues of design, multimedia, programming, control systems and fabrication by using computer controlled machines. The main teaching and research focus of the Master of Advanced Studies in Architecture (MAS), Specialization in Computer Aided Architectural Design (CAAD), Prof. Dr. Ludger Hovestadt, is the computer based architectural design and its automated production. The aim of our research and teaching project is to achieve a close connection between design and production by embedding the “digital chain” in the whole process. The digital chain is a design and production sequence with no analogue steps; the process offers high flexibility in terms of design and production. The use of new digital tools in architecture extends the profession beyond traditional design.
keywords Digital Methods of Construction; Representation; Integration of CNC technology in Education; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac20064103
id ijac20064103
authors Loveridge, Russell; Strehlke, Kai
year 2006
title The Digital Ornament using CAAD/CAAM Technologies
source International Journal of Architectural Computing vol. 4 - no. 1, 33-49
summary New digital technologies are challenging the traditions of the architectural design methodology, the relationship between context and design, and the dependency on skilled workmanship for the fabrication of beautiful and complex architecture. Intellectually, applications of digital technologies are also allowing for the reinvestigation, reinterpretation, and redevelopment of historical concepts, theories, and skills[1]. Our focus of ornament in this paper is presented as a constrained architectural testing ground, a reduced issue that still addresses the primary issues of geometry, aesthetics, individualism, and the transferal of design to materiality. Our work on digital ornament combines the traditionally intuitive skills of geometric & graphic manipulations with easily edited input (variables and digital images), control through parametric programming, and automated output (CNC manufacturing). The combination of these processes allows for efficient diversity and uniqueness of design, while also compensating for the increasing cost and declining availability of skilled artisans for the physical fabrication. The presented projects in teaching, research, and professional activities demonstrate our ongoing experiments with new technologies of programmed surface modeling and computer numerically controlled manufacturing (CNC manufacturing). This work has been incorporated in real world projects, both in the revitalization historic buildings, and in new applications of ornament in contemporary architecture.
keywords 3D Modeling; Parametric Design; Image Processing; Design Education; Cam
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00004
last changed 2007/03/04 07:08

_id ijac20064104
id ijac20064104
authors Sass, Larry
year 2006
title A wood frame grammar: A generative system for digital fabrication
source International Journal of Architectural Computing vol. 4 - no. 1, 51-67
summary A novel design system is presented that generates information for house construction exclusively from 3/4" plywood sheets. A shape grammar routine is employed to subdivide an initial solid shape into constructible components for desktop digital fabrication and design evaluation as a physical model. Once approved final construction can happen with components cut on a CNC wood router after the design has been validated by a laser cut model. Shape grammar rule format is used to design functions that build geometry later converted to a scripting language in CAD. Future goals for the grammar are to develop a complete CAD program that translates 3D designs to 2D drawings for flat digital fabrication. The ultimate goal of the program is to automate the translation of solid models to information for digital fabrication. Currently a manual process the translation allows the designer to focus on the visual aspects of evaluation at any scale with little concern for constructability.
keywords CNC; Shape Grammars; Scripting
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00005
last changed 2007/03/04 07:08

_id acadia06_538
id acadia06_538
authors Senagala, Mahesh
year 2006
title Light Exchange
doi https://doi.org/10.52842/conf.acadia.2006.538
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 538-539
summary The notions of collaborative exchanges, leadership, and entrepreneurialism that cross disciplinary boundaries were promoted in a digital design-build studio taught in spring 2005. With the starting funds of one dollar, the studio took up the challenge of building two full-scale tensile fabric structures that mark the entrances to a downtown San Antonio building. Structures of 1200 square feet total surface area were successfully designed, engineered, and executed within a semester framework at a final cost of $102,490. Collaborations were fostered with 24 industry partners from Asia, Europe, Australia, and USA, including four structural engineers. Innovative pedagogical, collaborative and project management methods were employed. The studio was structured as a self-organized design “firm.” Positions were created and students were “hired” into the firm to play different roles. The studio utilized web-based communication and project management tools. After a four-week warm-up project that established an innovative studio culture, professional schedules were prepared and the engineers were engaged in the collaborative process of designing the anchors, cables, connections and PTFE/PVC membranes. The peculiarities of digitally designing, fabricating and erecting tensile fabric structures were comprehensively explored. The studio completed all the CNC fabrication, concrete footings and membrane fabrication at local workshops through special partnerships.
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2008_022
id ecaade2008_022
authors Einar Larsen, Knut; Schindler, Christoph; Scheurer, Fabian; Stori, Simen
year 2008
title The Ringve Botanical Garden Viewing Platform
doi https://doi.org/10.52842/conf.ecaade.2008.783
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 783-790
summary Since 2006 the Faculty of Architecture of the Norwegian University of Science and Technology (NTNU) has organized the ‘1-2-TRE’ workshops on digital timber fabrication. The annual one-semester courses explore the possibilities and conditions of file-to-factory processes in cooperation with professional carpentries. The 2007 course focused on adding varied simple elements to a complex whole. Within a full semester course, a permanent viewing platform for the Botanical Garden of Trondheim was designed, produced and built by the participating students.
keywords Teaching project 1:1, Industry cooperation, Digital fabrication, CAD/CAM, Ringve Botanical Garden Viewing Platform
series eCAADe
email
last changed 2022/06/07 07:55

_id eaea2005_61
id eaea2005_61
authors Stellingwerff, Martijn
year 2006
title Fabrication of detailed scale models for eye level visualisation
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 61-68
summary Putting a camera close to a scale-model requires deliberately chosen abstractions and refinements in order to communicate the required architectural insights. Depending on what aspects exactly have to be evaluated (e.g. the visualisation of urban space, building blocks, façade structures, urban furniture, traffic, day and night situations, general atmosphere of a place etc.) different choices can be made for level of detail and materialisation of the scale-models. Specific computer controlled tools can be employed to gain high-precision control over model making. In this conference contribution an overview is provided of possibilities from our newly established Computer-Aided- Modelling-lab (CAM-lab). A selection of applications, made by students and researchers, will be presented. Specific choices can make or break the quality of the final presentation. Insight and knowledge of many available techniques, using the right tools and materials, can bring appropriate scenes before the camera. The input from unbiased and freely experimenting students can give happy surprises and new insights. While looking at the broad range of possibilities, inspired by innovative experiments of students in the workshop we work towards a set of best practices. Especially the integration of different digital and traditional techniques remains interesting.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id 2006_114
id 2006_114
authors Hirschberg, Urs; Allen Sayegh; Martin Frühwirth and Stefan Zedlacher
year 2006
title 3D Motion Tracking in Architecture - Turning Movement into Form - Emerging Uses of a New Technology
doi https://doi.org/10.52842/conf.ecaade.2006.114
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 114-121
summary Tracking in space is an important bridge between physical and virtual environments. Optical 3D motion capture systems have become standards in the special effects industry and are increasingly common in medical applications, as well as in Virtual Reality (VR) and Augmented Reality (AR) set-ups. Beyond these applications, there are a number of emerging uses for such systems in architectural design. The possibility to track complex movements in space in real time and at high precision can open up new modes of interacting with spaces, and of generating movement as form as part of an architectural design process. What makes these possibilities particularly interesting for architectural investigations is that they don’t have to be limited to a single user, but can happen in a collaborative way, involving many users simultaneously. After briefly explaining the technical aspects of the technology, an overview of such emerging uses is discussed. As an illustration of this potential, the results of a recent workshop are presented, in which a group of architecture students explored the hidden beauty of everyday movements and turned them into sculptural objects.
keywords Motion Tracking; Animation; Design Process; Augmented Reality; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2006_paper12
id ascaad2006_paper12
authors Katodrytis, George
year 2006
title The Autopoiesis and Mimesis of Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The use of digital technology in architecture has proven to be more assertive than originally thought: it has reconditioned the nature of the design process, and established new practices and techniques of fabrication. The 21st century began with the technology of art. There is a new responsiveness to the reading and understanding of digital space, which is characterized by complexity and the uncanny. Recent applications in digital technology show inquisitiveness in the contentious subject Genetic Algorithms. This new architectural process is characterized by two main shifts: from poiesis (or poetry) to autopoiesis, and from authenticity to mimesis. Since evolutionary simulations give rise to new forms rather than design them, architects should now be artists and operators of both Inventive and Systematic design. Inventive design: The digital media should bring about poiesis (poetry). Digital spaces reveal and visualize the unconscious desires of urban spaces and bring forth new dreamscapes, mysterious and surreal. This implies a Freudian spatial unconscious, which can be subjected to analysis and interpretation. “Space may be the projection or the extension of the physical apparatus”, Freud noted1. Space is never universal, but subjective. A space would be a result of introjection or projection – which is to say, a product of the thinking and sensing subject as opposed to the universal and stable entity envisaged since the Enlighten. There is a spatial unconscious, susceptible to analysis and interpretation. Systematic Design: Digital media should bring about an autopoiesis. This approach calls into question traditional methods of architectural design – which replace the hierarchical processes of production known as “cause and effect” - and proposes a design process where the architect becomes a constructor of formal systems. Will the evolutionary simulation replace design? Is metric space dead? Is it replaced by the new definition of space, that of topology? The new algorithmic evolutionary conditions give architecture an autopoiesis, similar to biological dynamics. The use of algorithms in design and fabrication has shifted the role of the architect from design to programming. Parametric design has introduced another dimension: that of variation and topological evolution, breaking the authentic into the reused. Architecture now is about topology than typology, variation than authenticity, it is mimetic than original, uncanny and subconscious than merely generic. In a parallel universe, which is both algorithmic and metaphysical, the modeling machine creates a new abstraction, the morphogenesis of the “new hybrid condition”. The emphasis of the exploration is on morphological complexity. Architecture may become – paradoxically - rigorous yet more uncanny and introverted.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddss2006-pb-415
id DDSS2006-PB-415
authors Ching-Shun Tang
year 2006
title Smart Structure: Designs with Rapid Prototyping
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 415-429
summary This research presents the new orientation of the combination of digital modelling with generative programming and joint method of traditional wood structure for manipulating Rapid Prototyping to explore the assembling of free form objects. The presenting of the example indicates that the edition of Maya scripts defines the purpose of design. Through the discussion on scripts developing the assembly of the free-form objects of frames and surfaces and through the achievement that RP produces and examines objects, we bring out the possibilities of the new form developed from the old structure and illustrate how to develop our hypothesis. The developed result could provide the possible new way for free-form assembly. We expatiate our research process and final achievement and provide a new thinking direction in the education field.
keywords CAD/CAM, Digital fabrication, Rapid prototyping, Traditional wood structure
series DDSS
last changed 2006/08/29 12:55

_id ijac20064208
id ijac20064208
authors Garber, Richard; Jabi, Wassim
year 2006
title Control and Collaboration: digital fabrication strategies in academia and practice
source International Journal of Architectural Computing vol. 4 - no. 2, 121-143
summary The integration of digital tools currently being used in many schools and offices with Computer Numerically Controlled (CNC) hardware, has allowed architects to exert a far greater degree of control than they have previously been afforded. It is precisely this control that enables greater collaboration during design phases between architects and fabricators. However, the impact of this integration on academia and small practice is unknown. Several questions remain to be answered regarding teaching fabrication techniques and identifying strategies suitable for adoption in small firms. This paper investigates digital fabrication not as a software-specific set of capabilities, but as a design methodology that can allow schools to graduate young practitioners who can use these concepts to design and manage projects in more sophisticated ways. We outline six control and collaboration strategies and present several projects that explore those concepts through analog, digital, and hybrid methods.
series journal
last changed 2007/03/04 07:08

_id 2006_336
id 2006_336
authors Kapellos, Alexandre; Martina Voser; Philippe Coignet and If Ebnöther
year 2006
title CNC Morphological Modelling in Landscape Architecture
doi https://doi.org/10.52842/conf.ecaade.2006.336
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 336-340
summary The landscape design studio proposes to research synergies between teaching landscape architecture and using computer numerically controlled (CNC) machines as prototyping tools for students. The focus of the course is not to be proficient in CAAD-CAM technologies but to familiarize architecture students with landscape design and the problematic of large-scale topographical interventions and use these tools as verification instruments. Many prototyping tools are available to the students at the school and are easily accessible: a 3-axis mill, laser cutter, flatbed cutter and a 3D printer. Of all the CNC machines, the 3-axis mill allows for the best translation between idea and model in landscape modeling. Of interest to us is the continuous and more fluid exchange between paper/idea and a physical three-dimensional output, the ability to be able to re-shape continuously the model. The result is a series of models or evolutions, documenting the project idea as it has evolved from the initial concept to the final project.
keywords Abstract Types of Spatial Representation; CAAD-CAM technology; Digital prototyping; Landscape / Morphology
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2006_253
id caadria2006_253
authors SERGIO ARAYA
year 2006
title DESIGNING AND FABRICATING CONTINUOUS COMPLEX CURVED STRUCTURES FROM FLAT PANEL MATERIALS USING A FLEXURE APPROACH
doi https://doi.org/10.52842/conf.caadria.2006.x.w6j
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 253-259
summary This paper describes a procedure that combines scripting and modeling in a parametric environment to design and manufacture complex double curved structures from rigid flat panels using rapid prototyping tools and CNC machining. It engages generative design techniques and programming while extending the digital design and fabrication possibilities for curved structures.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 2006_326
id 2006_326
authors Zisimopoulou, Katerina and Alexis Fragkiadakis
year 2006
title Constructing the String Wall - Mapping the Material Process
doi https://doi.org/10.52842/conf.ecaade.2006.326
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 326-335
summary The String Wall is the emergent product of a study on technological applications in architecture. Our team attempted to test the limits of the common partition wall construction, challenging the standard notion of the partition screen wall that recedes behind the structures, spaces and objects as a background condition. Such vibrant a partition as the SW becomes the center to the formation of the space it defines. The story of the SW could be described as the organic combination of the bow and the twist. The latent materiality and geometry of the bow and the twist as composite systems that are mined for their structural, tectonic and programmatic potential are tested prior to final construction by 3D printed scaled models. The SW is composed of successive frames that consist of vertical twisted strips of plywood attached to wooden beams. These frames emulate the stud elements of the conventional dry wall partition systems and are manufactured entirely manually. On the other hand, the use of CNC milling machine is employed for the production of the bowed plywood strips that fill in the frame. Three fluctuated curvatures produce strips that are combined rhythmically to produce the striated effect of the SW. The material is manipulated in order to expose its hidden side, the sequence of the multiple layers of the different infilling conditions. The oblique perspective of the SW is achieved through a novel geometric transparency, thus offering constantly changing views to a moving observer. The manipulation of the position of the component bowed and twisted strips explore the application of a see-through condition that escapes the norm and reveals the back to the front in a unique whole. The void of the screen wall becomes ultimately programmatic through the use of light. A sequence of halogen lights situated at the top and bottom of the in-between the wooden strips void create the dumbfounded effect of the SW experience.
keywords Digital construction methods; shape studies; rapid prototyping; 3D printer models
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
doi https://doi.org/10.52842/conf.acadia.2006.232
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_282345 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002