CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ijac20064307
id ijac20064307
authors Goldberg, Sergio Araya
year 2006
title Computational Design of Parametric Scripts for Digital Fabrication of Curved Structures
source International Journal of Architectural Computing vol. 4 - no. 3, 99-117
summary This paper explores strategies for building toolchains to design, develop and fabricate architectural designs. It explains how complex curved structures can be constructed from flat standard panels. The hypothesis of this research is that by embedding ruled based procedures addressing generative, variational, iterative, and fabricational logics into early phases of design, both design techniques and digital fabrication methods can merge to solve a recurrent problem in contemporary architectural design, building double curved structures. Furthermore it achieves this using common fabrication methods and standard construction materials. It describes the processes of programming computational tools creating and developing designs to fabricate continuous complex curved structures. I describe this through a series of experiments, using parametric design environments and scripted functions, implementing certain techniques to fabricate these designs using rapid prototyping machines. Comparing different design and fabrication approaches I offer a discussion about universal application of programmed procedures into architectural design.
series journal
last changed 2007/03/04 07:08

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2006_253
id caadria2006_253
authors SERGIO ARAYA
year 2006
title DESIGNING AND FABRICATING CONTINUOUS COMPLEX CURVED STRUCTURES FROM FLAT PANEL MATERIALS USING A FLEXURE APPROACH
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 253-259
doi https://doi.org/10.52842/conf.caadria.2006.x.w6j
summary This paper describes a procedure that combines scripting and modeling in a parametric environment to design and manufacture complex double curved structures from rigid flat panels using rapid prototyping tools and CNC machining. It engages generative design techniques and programming while extending the digital design and fabrication possibilities for curved structures.
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2006_227
id caadria2006_227
authors KENFIELD GRIFFITH, LARRY SASS
year 2006
title COMPUTING & MATERIALIZING NON-UNIFORM SHAPES: An evolutionary approach to generate and digital fabricate non-uniform masonry walls
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 227-235
doi https://doi.org/10.52842/conf.caadria.2006.x.m4e
summary A novel evolutionary system used for the production of design information for digital fabrication is presented. This program generates information for physical construction as architectural models of double-curved walls built from unique masonry units. We present a series of computer programs and physical models as examples of straight and curved walls generated from an evolutionary system built for design. The wall examples here are built of non-uniform, interlocking units. This project is an exploration of evolutionary design tools that construct double-curved structures in CAD for fabrication with a 3D printer.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac20064106
id ijac20064106
authors Kilian, Axel
year 2006
title Design innovation through constraint modeling
source International Journal of Architectural Computing vol. 4 - no. 1, 87-105
summary In this paper we describe how constraint modeling can support design innovation. Furthermore, we lay out how constraints are employed in the construction and exploration of a model's design space. We place the approach within the context of design exploration using computational and conceptual representations of design. A review of the literature reveals that geometric, topologic, functional, and quantitative constraints are those most commonly used. For each constraint type, an example is presented drawing from several workshops and research conducted by the author. The examples range from product design, to structural design, to fabrication issues in freeform geometry. Based on the case studies, we describe how the different types of constraints can be used as design drivers and help in the exploration of solution spaces. In conclusion, we identify the need for bidirectional exercising of constraints as the next challenge in design exploration and discuss how it is relevant in particular for cross domain design.
keywords Design Exploration; Constraint Modeling; Parametric Modeling
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00007
last changed 2007/03/04 07:08

_id ecaade2016_132
id ecaade2016_132
authors Mohite, Ashish and Kotnik, Toni
year 2016
title Model Translations - Studies of translations between physical and digital architectural models
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2016.1.561
wos WOS:000402063700061
summary With the rise of the digital in architecture and the availability of digital fabrication tools, the interest in the material aspect of the model has intensified. At the same time, the design space for exploration of material behavior and its design potential has been extended from the physical into the digital. This has resulted in a cyclic set of translations from the physical realm into the digital by means of mathematical descriptions and back from the digital realm into the physical by means of digitally controlled fabrication processes. Despite the availability of more and more computational power and improvement of precision in simulation, these translations from the physical into the digital and vice versa can never be exact (Eco 2006), the translations from the physical model into a digital model and from the digital into the physical are "spaces of instability" (Evans 2000). The current paper explores in more detail this space of instability between physical and digital models, its potential for architectural design, and the central role of the mathematical description in this reciprocal set of translations.
keywords Architectural model; simulation; digital fabrication; material computation; material behavior
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_256
id ecaade2017_256
authors Symeonidou, Ioanna
year 2017
title Reinventing Design-Build projects with the use of digital media for design and construction - A survey of 120 educational pavilions
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 231-240
doi https://doi.org/10.52842/conf.ecaade.2017.1.231
summary During the last decade the hype for digitally fabricated educational pavilions has become very popular among architecture schools. A survey with the aim to catalogue and classify educational pavilions revealed more than 120 cases of digitally fabricated pavilions within the last decade. The analysis of the sample of 120 Design-Build projects built during the period 2006-2016 revealed, apart from obvious similarities and differences, the prevailing trends relating to the materials and the technology used for the design, manufacturing and assembly. From the processing of the gathered data a set of typologies emerge, which relate both to morphological characteristics as well as to the design process. The paper concludes by discussing the advantages and critical points of this educational practice and the learning outcomes for both students and educators.
keywords Design-Build; Digital fabrication; architectural education; CAD / CAM; pavilions
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
doi https://doi.org/10.52842/conf.acadia.2006.148
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id ddss2006-pb-415
id DDSS2006-PB-415
authors Ching-Shun Tang
year 2006
title Smart Structure: Designs with Rapid Prototyping
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 415-429
summary This research presents the new orientation of the combination of digital modelling with generative programming and joint method of traditional wood structure for manipulating Rapid Prototyping to explore the assembling of free form objects. The presenting of the example indicates that the edition of Maya scripts defines the purpose of design. Through the discussion on scripts developing the assembly of the free-form objects of frames and surfaces and through the achievement that RP produces and examines objects, we bring out the possibilities of the new form developed from the old structure and illustrate how to develop our hypothesis. The developed result could provide the possible new way for free-form assembly. We expatiate our research process and final achievement and provide a new thinking direction in the education field.
keywords CAD/CAM, Digital fabrication, Rapid prototyping, Traditional wood structure
series DDSS
last changed 2006/08/29 12:55

_id acadia06_518
id acadia06_518
authors Hasegawa, Toru
year 2006
title The hexEnvelope system: a cross-platform embedding of material and software logic into descriptive geometry
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 518-529
doi https://doi.org/10.52842/conf.acadia.2006.518
summary This paper follows the technical problematic of the hexEnvelope, a novel system for building complex geometric objects. Operating as a scripted system of parametric operations, and running through multiple 2D, 3D, and fabrication software packages, the hexEnvelope system allows for a highly tectonic assemblage of cellular units. Specific issues addressed within the system include the realization of curved surfaces through flat material, the embedding of fabrication logic and material performance within descriptive geometry, and multiple scales of deployment in terms of their tectonic and material consequence.
series ACADIA
email
last changed 2022/06/07 07:49

_id sigradi2006_e081d
id sigradi2006_e081d
authors Hecker, Douglas
year 2006
title Dry-In House: A Mass Customized Affordable House for New Orleans
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 359-362
summary Dry-in house is a mass customized affordable housing system proposed for the reconstruction of New Orleans. The dry-in House gets the owner back to their home site quickly while providing the infrastructure an occupant needs (shelter, water, electricity). The owner is supplied with an inhabitable shell that is customizable before it is fabricated as well as onsite as the project is “fitted out” over time. The key concept is to allow families to participate in the design of their customized homes and to get people back to their home sites as quickly as possible and to give them the opportunity to finish and further customize their home over time. The project addresses inefficiencies and redundancies in emergency housing currently provided by FEMA. Primarily the dry-in House as its name implies provides a timely dried-in space which doubles as a customized infrastructure for the reconstruction of homes and neighborhoods. The project is designed to meet the $59,000 life cycle cost of the presently provided temporary housing, the notorious “FEMA Trailer”. However, the Dry-in House provides a solution that: a) Is permanent rather than temporary. The house will be finished and further customized over time rather than disposed of. b) Reoccupies the owner’s home site rather than a “FEMA ghetto” keeping the community together and functioning. c) Is mass customized rather than mass-standardized allowing the owner to have input on the design of their home. The design is a “starter home” rather than an inflexible and over-determined solution. This also has the benefit of giving variation to the reconstruction of New Orleans as opposed to the monotony of mass-production. d) Allows the owners to further customize their home over time with additional exterior finishes and the subdivision and fit out of the interior. By utilizing plate truss technology and associated parametric modeling software, highly customized trusses can be engineered and fabricated at no additional cost as compared to off-the-shelf trusses. This mass customization technology is employed to create the building section of each individual’s house. The truss is not used in its typical manner, spanning over the house; rather, it is extruded in section to form the house itself (roof, wall, and floor). Dry-in House exploits this building technology to quickly rebuild communities in a sensible manner. It allows for an increased speed of design and construction and most importantly it involves the owner in this process. The process has other benefits like reducing waste not only because it replaces the FEMA trailer which is expensive and disposable but also since the components are prefabricated there is more precision and also quality. The Dry-in House allows the owner-designer to “draw” the section of their new home providing them with a unique design and a sense of belonging and security. The design of the section of the house also provides them with spatial configurations customized relative to site conditions, program etc... Because of the narrow lot configuration of New Orleans, the design maximizes the roof as a source for natural ventilation and light for the interior of the house. In addition, the house is one room deep providing cross ventilation in all rooms minimizing reliance on artificial mechanical systems. The timely and efficient off site fabrication of building sections facilitate larger concentrations of volunteers on site at one time, thereby promoting a greater collective spirit among the community and volunteer workforce, a therapeutic event for the community as they participate in the rebuilding of their homes and city. With individualized building sections arriving on site, the construction process is imagined to be more akin to a barn raising, making possible the drying in of multiple houses in less than one day.
keywords mass customization; digital manufacturing; affordable housing
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia07_040
id acadia07_040
authors Hyde, Rory
year 2007
title Punching Above Your Weight: Digital Design Methods and Organisational Change in Small Practice
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 40-47
doi https://doi.org/10.52842/conf.acadia.2007.040
summary Expanding bodies of knowledge imply expanding teams to manage this knowledge. Paradoxically, it can be shown that in situations of complexity—which increasingly characterise the production of architecture generally—the small practice or small team could be at an advantage. This is due to the increasingly digital nature of the work undertaken and artefacts produced by practices, enabling production processes to be augmented with digital toolsets and for tight project delivery networks to be forged with other collaborators and consultants (Frazer 2006). Furthermore, as Christensen argues, being small may also be desirable, as innovations are less likely to be developed by large, established companies (Christensen 1997). By working smarter, and managing the complexity of design and construction, not only can the small practice “punch above its weight” and compete with larger practices, this research suggests it is a more appropriate model for practice in the digital age. This paper demonstrates this through the implementation of emerging technologies and strategies including generative and parametric design, digital fabrication, and digital construction. These strategies have been employed on a number of built and un-built case-study projects in a unique collaboration between RMIT University’s SIAL lab and the award-winning design practice BKK Architects.
series ACADIA
email
last changed 2022/06/07 07:50

_id ascaad2006_paper12
id ascaad2006_paper12
authors Katodrytis, George
year 2006
title The Autopoiesis and Mimesis of Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The use of digital technology in architecture has proven to be more assertive than originally thought: it has reconditioned the nature of the design process, and established new practices and techniques of fabrication. The 21st century began with the technology of art. There is a new responsiveness to the reading and understanding of digital space, which is characterized by complexity and the uncanny. Recent applications in digital technology show inquisitiveness in the contentious subject Genetic Algorithms. This new architectural process is characterized by two main shifts: from poiesis (or poetry) to autopoiesis, and from authenticity to mimesis. Since evolutionary simulations give rise to new forms rather than design them, architects should now be artists and operators of both Inventive and Systematic design. Inventive design: The digital media should bring about poiesis (poetry). Digital spaces reveal and visualize the unconscious desires of urban spaces and bring forth new dreamscapes, mysterious and surreal. This implies a Freudian spatial unconscious, which can be subjected to analysis and interpretation. “Space may be the projection or the extension of the physical apparatus”, Freud noted1. Space is never universal, but subjective. A space would be a result of introjection or projection – which is to say, a product of the thinking and sensing subject as opposed to the universal and stable entity envisaged since the Enlighten. There is a spatial unconscious, susceptible to analysis and interpretation. Systematic Design: Digital media should bring about an autopoiesis. This approach calls into question traditional methods of architectural design – which replace the hierarchical processes of production known as “cause and effect” - and proposes a design process where the architect becomes a constructor of formal systems. Will the evolutionary simulation replace design? Is metric space dead? Is it replaced by the new definition of space, that of topology? The new algorithmic evolutionary conditions give architecture an autopoiesis, similar to biological dynamics. The use of algorithms in design and fabrication has shifted the role of the architect from design to programming. Parametric design has introduced another dimension: that of variation and topological evolution, breaking the authentic into the reused. Architecture now is about topology than typology, variation than authenticity, it is mimetic than original, uncanny and subconscious than merely generic. In a parallel universe, which is both algorithmic and metaphysical, the modeling machine creates a new abstraction, the morphogenesis of the “new hybrid condition”. The emphasis of the exploration is on morphological complexity. Architecture may become – paradoxically - rigorous yet more uncanny and introverted.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ijac20064103
id ijac20064103
authors Loveridge, Russell; Strehlke, Kai
year 2006
title The Digital Ornament using CAAD/CAAM Technologies
source International Journal of Architectural Computing vol. 4 - no. 1, 33-49
summary New digital technologies are challenging the traditions of the architectural design methodology, the relationship between context and design, and the dependency on skilled workmanship for the fabrication of beautiful and complex architecture. Intellectually, applications of digital technologies are also allowing for the reinvestigation, reinterpretation, and redevelopment of historical concepts, theories, and skills[1]. Our focus of ornament in this paper is presented as a constrained architectural testing ground, a reduced issue that still addresses the primary issues of geometry, aesthetics, individualism, and the transferal of design to materiality. Our work on digital ornament combines the traditionally intuitive skills of geometric & graphic manipulations with easily edited input (variables and digital images), control through parametric programming, and automated output (CNC manufacturing). The combination of these processes allows for efficient diversity and uniqueness of design, while also compensating for the increasing cost and declining availability of skilled artisans for the physical fabrication. The presented projects in teaching, research, and professional activities demonstrate our ongoing experiments with new technologies of programmed surface modeling and computer numerically controlled manufacturing (CNC manufacturing). This work has been incorporated in real world projects, both in the revitalization historic buildings, and in new applications of ornament in contemporary architecture.
keywords 3D Modeling; Parametric Design; Image Processing; Design Education; Cam
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00004
last changed 2007/03/04 07:08

_id 2006_342
id 2006_342
authors Lyon, Eduardo
year 2006
title Component Based Design and Digital Manufacturing - A DfM Model for Curved Surfaces Fabrication using Three Axis CNC Router
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 342-350
doi https://doi.org/10.52842/conf.ecaade.2006.342
summary Through the use of design for manufacturing (DfM) method and looking at the relations between its potential application in architectural production and its implementation using digital manufacturing technologies, we analyze building construction processes and explore, in more detail curved surface fabrication using two dimensional cutting and three dimensional milling processes. Afterwards a DfM model for curved surfaces fabrication using three-axis computer numerical control (CNC) router is proposed. The proposed DfM model relies fundamentally in two supporting factors; the implementation of design heuristics that integrates production knowledge and the availability of some design related to production evaluation metrics. Subsequently, we test and refine the model using structured design experiences. This was accomplished by capturing new design heuristics and detecting useful evaluation metrics for production. In the final part of the research, a refined DfM model was tested in a component design case study. The case study is based on producing a curved surface module on wood for an existing proprietary component based wall system. As a summary, we conceptualize from this top-down development approach to create a design for manufacturing model that integrates design and construction in architecture, based on three possible applications fields: Design processes improvement, building production process improvement, CAD-CAM tools development. Our purpose is to provide better foundational constructs and approaches for integrating design with manufacturing in architecture.
keywords Design for Manufacturing; Design Cognition; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia06_136
id acadia06_136
authors Schindler, C., Braach, M., Scheurer, F.
year 2006
title “Inventioneering Architecture” Building a doubly curved section through Switzerland
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 136-145
doi https://doi.org/10.52842/conf.acadia.2006.136
summary This paper describes the automated detailing and fabrication of a complex doubly curved exhibition platform (designed by Instant Architects) accomplished with a continuous digital process chain. The project analysis points out a shift in value creation from material processing to information processing.
series ACADIA
email
last changed 2022/06/07 07:56

_id 032e
id 032e
authors Schnabel, Marc Aurel; Bowller, Nicole
year 2007
title Disparallel Spaces
source Exhibition Catalogue, Tin Sheds Gallery at The Faculty of Architecture, Design and Planning, The University of Sydney, Sydney 2006, NSW, Australia, ISBN: 978-0-9581221-1-5
summary DISPARALLEL SPACES is an architectural design exhibition showcasing creative digital design techniques at the Tin Sheds Gallery, Sydney, 24 May to 16 June 2007. It explores how the coupling of architectural design with digital modelling and fabrication methods allows for a deeper comprehension and experience of space and form. It confronts problems in architectural design from a diversity of multi-faceted and eccentric approaches, setting the trend for novel viewpoints of innovation and spatial design. It offers a unique opportunity to experience the digitalized future in the field of architecture. Work by Bachelor of Architecture students, curated by Damien Butler, Belinda Cowen, Patrick Keane, Zayad Motlib and Dr Marc Aurel Schnabel.
keywords parametric design, scripting, algorithmic design, exhibition
series book
type normal paper
email
more http://disparallelspaces.tk/
last changed 2007/12/17 05:33

_id acadia06_538
id acadia06_538
authors Senagala, Mahesh
year 2006
title Light Exchange
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 538-539
doi https://doi.org/10.52842/conf.acadia.2006.538
summary The notions of collaborative exchanges, leadership, and entrepreneurialism that cross disciplinary boundaries were promoted in a digital design-build studio taught in spring 2005. With the starting funds of one dollar, the studio took up the challenge of building two full-scale tensile fabric structures that mark the entrances to a downtown San Antonio building. Structures of 1200 square feet total surface area were successfully designed, engineered, and executed within a semester framework at a final cost of $102,490. Collaborations were fostered with 24 industry partners from Asia, Europe, Australia, and USA, including four structural engineers. Innovative pedagogical, collaborative and project management methods were employed. The studio was structured as a self-organized design “firm.” Positions were created and students were “hired” into the firm to play different roles. The studio utilized web-based communication and project management tools. After a four-week warm-up project that established an innovative studio culture, professional schedules were prepared and the engineers were engaged in the collaborative process of designing the anchors, cables, connections and PTFE/PVC membranes. The peculiarities of digitally designing, fabricating and erecting tensile fabric structures were comprehensively explored. The studio completed all the CNC fabrication, concrete footings and membrane fabrication at local workshops through special partnerships.
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia06_122
id acadia06_122
authors Senagala, Mahesh
year 2006
title Curvilinear Pedagogy of Tensile Fabrications
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 122-134
doi https://doi.org/10.52842/conf.acadia.2006.122
summary This paper outlines the pedagogical issues of design and fabrication of tensile membrane structures. Pedagogy needs to closely follow the nature of structures, materials and fabrication processes. Pedagogy of tensile fabric structures is significantly different from that of the conventional frame and panel (stick-built) structures. To explore the digital design and fabrication of tensile membrane structures, a design/build studio was conducted at the University of Texas at San Antonio. The present paper identifies the peculiarities of this type of project and discusses the pedagogical lessons learned from this design-build studio.
series ACADIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_420598 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002