CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 603

_id caadria2009_046
id caadria2009_046
authors Haeusler, Matthias Hank
year 2009
title Modulations of Voxel Surfaces Through Emotional Expressions to Generate A Feedback Loop Between Private Mood and Public Image
doi https://doi.org/10.52842/conf.caadria.2009.173
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 173-182
summary My proposal is an investigation into the perceptual boundaries between human and architectural expression. It asks how architecture can creatively adopt human expression by using the emotions ‘displayed’ on the ‘surface face’ as a generator for displaying a surface on a voxel façade to achieve a cross-connecting perceptual change with modulations through emotion (Massumi, 2006). Through voxel facades the public with their expressed emotions will be included in the decision process of defining space, by expressing our innermost feelings through an architectural medium. Thus emotions of the individual have a platform and can be conveyed indirectly to the public, and in turn open up discussions about the state of the community through the state of the façade. An alliance of media and place in an urban context can be achieved and created, with the participation of its inhabitants, along with a new perception of how media and architecture can together shape and inform spatial relations for a feedback loop between private mood and public image.
keywords Voxel façade; simulation; human-environment interaction; dynamic space
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_290
id 2006_290
authors Cenani, Sehnaz and Gulen Cagdas
year 2006
title Shape Grammar of Geometric Islamic Ornaments
doi https://doi.org/10.52842/conf.ecaade.2006.290
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 290-297
summary Shape grammars are the algorithmic systems used to analyze existing designs or create new ones. In spite of using text or symbols to express abstract representations, shape grammars aid to create novel designs through computational effort with shapes and rules. Many probabilities of rule selections and applications of these rules may generate emergent design solutions or create new design objectives. This paper aims to present the characteristics, shape grammar rules and historical background of geometrical ornaments in Islamic culture and to point out the possibilities of mathematics of symmetry. The knowledge presented in this paper can be used to generate new depictions and to gain new application areas like typography, wallpaper, landscape, façade design, tiling, jewelry, and textile designs. Even, these types of shape grammar studies can be used to open a novel approach as in Jean Nouvel’s “Arab World Institute” in Paris. The role of shape grammar analysis of geometrical Islamic ornaments explained in this paper is to increase the efficiency of architectural design education by facilitating the formal understanding of historical patterns. Novel use of shape grammars in education can enrich the designer’s ability to generate original designs. In this paper variants of Islamic ornaments are created with a CAAD program. A selected geometrical bezeme (ornament) from Islamic ornamental design is generated by encoding with a computer programming language. According to the generated bezeme, interaction scenario is as follows: Computer has the main control over grammar application. Only, some of the rules can be selected by the user. Varieties of this ornament are generated randomly through their line weight, line colors, filling types and filling colors. The shape grammar rules outlined in this paper are simple, but the resulting figures can be very inspiring. Furthermore, the endless potential for future design innovations is unlimited.
keywords Computer-generated geometrical design; shape grammar rules; geometrical Islamic ornaments; Islamic patterns
series eCAADe
email
last changed 2022/06/07 07:55

_id 2006_302
id 2006_302
authors Dounas, Theodoros and Anastasios M. Kotsiopoulos
year 2006
title Generation of alternative designs in architectural problems using Shape Grammars defined with animation tools - A computer implementation of shape grammars using modelling and animation software
doi https://doi.org/10.52842/conf.ecaade.2006.302
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 302-307
summary We present a model of generation of alternative designs to selected architectural and spatial configurations of small complexity. Specifically we present a production pipeline of architectural / spatial configurations using the context of animation and time based design tools. Our model consists of time and space design constraints of boundaries / objects affecting a given architectural design, thus producing an alternative solution for every timeframe of the animation cycle. The alternative designs vary from the original according to their temporal and/or spatial distance from the original object on the animation time-line. The constraints placed upon the objects , used as actuators of Shape Grammars, are defined informally by the user/designer while their influence can vary according to time, speed, location, configuration of the object and/or the constraint itself. However the constraints further function as formal rules for the Shape Grammar creation so that our model tries to predict ahead of time the emergence of alternate designs. The employ of animation tools [shape driven curves, speed and time-line functions,parent child relationships] in the shape generation of our model empowers the user/designer to configure whole sets of shapes and designs interactively and without the need to define every solution independently. Simultaneously, a different, time-focused view of our model describes its use on designs that develop different configurations over time. Thus a duality of our model is established: either the animated schema may be a sum or family of various designs or the animated time-line represents a single design which changes over time. Finally the possibility of an automated analysis of every design is discussed, using Space Syntax diagrams so the designer can quickly evaluate the various spatial configurations produced by a single original.
keywords shape computation; shape grammar computer implementation; alternative designs; animation software techniques
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2006_e068d
id sigradi2006_e068d
authors Catovic-Hughes, Selma
year 2006
title Digital Storytelling: "Memory….. Sarajevo, my personal story"
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 337-340
summary “It was a fresh summer night, sky deprived of stars, and hardly any signs of life. After hours of waiting, well passed midnight, they finally allowed us to enter. I couldn’t see or hear much, except movements of those in front of me, but judging by intense scent of mildew and worm-like smell of earth, I realized my mile long underground adventure had begun. There was no looking back, only the brave steps ahead into my new, and hopefully, safe and fruitful future.” [ from diary95 ] Just like many teens around the world, I too kept a journal. It began with playful thoughts of a teenage girl, living in Sarajevo, enjoying life. On my fifteenth birthday, those carefree moments were soon replaced with brutal facts of life under siege: Sarajevo and its citizens had been surrounded by the Serbs who took over all the roads leading in and out of the city. Three years later, I was weeks away from graduating high school, and instead of getting excited, I wondered about my future…”Yesterday was awesome -- we had both electricity and water for eight straight hours…hooray!! You could see the lights miles away…the entire city was awake, making pies and bread, washing clothes, watching movies.” [ from diary93 ] Was I going to spend the rest of my life anticipating the restricted electric and water timetable? Would I wake up the next day to see all my family alive? Would I ever have a chance to fulfill my dreams? This project captures the process of [re]tracing steps of my personal journey of leaving Sarajevo to come to the United States and [re]constructing memories as a sequence of spatial events using the artifacts and the text from my war journals. The intent of my project is to define that line between the old and the new, and intertwine and merge its current condition with the facts and memories from the past. Although there was never a permanent “Berlin-wall-like” divider, the natural contours of the river and invisible screens of the snipers served as impermeable walls and divided the city for four years. The implied boundary seemed to be more powerful than the massiveness of the concrete barricades. Is it possible to re-condition something [building, space, soul] to be and feel the same when it had been destroyed and deeply scarred on the inside? Instead of placing banal memorials engraved with the bare facts, how can we make a tribute to a series of events—a time period that changed the fabric of the city—in a more three-dimensional experience? How can we integrate digital phenomenon in the process of the post-war reconstruction to re-trace the past while creating necessary advanced improvements for the new contemporary society? The impact that social conditions have on architecture, art, culture, and ultimately, people can be told in a universal language – digital storytelling, containing pieces of history and personal memories to create representations of time and space of the past, present or future.
keywords memory; postwar; retrace; reconstruction; memorial
series SIGRADI
email
last changed 2016/03/10 09:48

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ddss2006-hb-187
id DDSS2006-HB-187
authors Lidia Diappi and Paola Bolchi
year 2006
title Gentrification Waves in the Inner-City of Milan - A multi agent / cellular automata model based on Smith's Rent Gap theory
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 187-201
summary The aim of this paper is to investigate the gentrification process by applying an urban spatial model of gentrification, based on Smith's (1979; 1987; 1996) Rent Gap theory. The rich sociological literature on the topic mainly assumes gentrification to be a cultural phenomenon, namely the result of a demand pressure of the suburban middle and upper class, willing to return to the city (Ley, 1980; Lipton, 1977, May, 1996). Little attempt has been made to investigate and build a sound economic explanation on the causes of the process. The Rent Gap theory (RGT) of Neil Smith still represents an important contribution in this direction. At the heart of Smith's argument there is the assumption that gentrification takes place because capitals return to the inner city, creating opportunities for residential relocation and profit. This paper illustrates a dynamic model of Smith's theory through a multi-agent/ cellular automata system approach (Batty, 2005) developed on a Netlogo platform. A set of behavioural rules for each agent involved (homeowner, landlord, tenant and developer, and the passive 'dwelling' agent with their rent and level of decay) are formalised. The simulations show the surge of neighbouring degradation or renovation and population turn over, starting with different initial states of decay and estate rent values. Consistent with a Self Organized Criticality approach, the model shows that non linear interactions at local level may produce different configurations of the system at macro level. This paper represents a further development of a previous version of the model (Diappi, Bolchi, 2005). The model proposed here includes some more realistic factors inspired by the features of housing market dynamics in the city of Milan. It includes the shape of the potential rent according to city form and functions, the subdivision in areal submarkets according to the current rents, and their maintenance levels. The model has a more realistic visualisation of the city and its form, and is able to show the different dynamics of the emergent neighbourhoods in the last ten years in Milan.
keywords Multi agent systems, Housing market, Gentrification, Emergent systems
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id ddss2006-hb-167
id DDSS2006-HB-167
authors Michael Balmer and Kai Nagel
year 2006
title Shape Morphing of Intersection Layouts Using Curb Side Oriented Driver Simulation
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 167-183
summary In a traffic network, capacities of parts of the network restrict the amount of transport that can be handled by this network. The capacity of a given traffic network element is not fixed, but influenced by parameters such as number of lanes, maximum speed, weather, view horizon, and so on. These parameters also define the maximum capacity of complicated intersections. Special shapes of intersections, particularly in urban regions, may further increase or decrease their capacity. This paper investigates an evolutionary algorithm to automatically improve the geometrical layout of parts of an urban network according to externally specified criteria. The paper consists of two main parts. In the first part, a simulation model is described which is able to produce realistically behaving vehicles only by using information about the curb side locations of the roads. This avoids the need to use lane connectivity, signal plans, etc. - which are details that would change during a change of the intersection layout. In the second part of the paper, the simulation changes the road and intersection layouts based on the behaviour of the vehicles. Using a feedback loop allows one to optimize the capacity of the modelled road system while its spatial extents are minimized. As a case study, a special roundabout is examined: 'Central' in downtown Zurich, Switzerland. The particularity of this roundabout is that it partially behaves like a roundabout but also contains two uncontrolled intersections. Due to its central position in the city, the roundabout is very busy with both individual cars and public transport vehicles.
keywords Agent simulation method, Intersection layout, Evolutionary algorithm
series DDSS
last changed 2006/08/29 12:55

_id caadria2006_111
id caadria2006_111
authors DAVID HARRISON, MICHAEL DONN
year 2006
title USING WEB 2.0 TECHNOLOGIES TO PRESERVE DESIGN HISTORY AND IMPROVE COLLABORATION
doi https://doi.org/10.52842/conf.caadria.2006.x.a7m
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 111-117
summary This paper describes ongoing research into how emerging Internet concepts used in conjunction with existing Information Technologies (IT) can improve inter-project communication and understanding. The emphasis of the research is to use technology as an enabler to share personal thoughts and enhance the conversation that takes place within a development team. It stems from the observation that the emphasis of many new Architecture, Engineering and Construction (AEC) technologies is to minimise and diffuse project conversation with highly complex, machine interpretable building information models.Project teams are usually brought together for a relatively short but intense period of time. Following project completion these unique teams are dissolved just as quickly and often are never formed again. As a consequence it is difficult to justify the investment in time and resources required to implement complex IT-based collaboration solutions. A further barrier to adoption is the differential application of IT skills across the AEC industry. Therefore in order for a new technology to gain broad acceptance and be most beneficial it must be applicable to the broadest audience with the minimum investment required from all parties. The primary objective of this research is to preserve the rich design history of a project from conception to completion. Submitted information can be intelligently searched using the meta-data sourced from syndicated data feeds about team members, project timelines, work diaries and email communication. Once indexed users can tag documents and messages in order to provide a further, far richer layer of meta-data to assist in searching, identification of issues and semantic clarification. This strategy of defining AEC semantics through social interaction differs greatly from that of more complex, computer interpretable solutions such as Industry Foundation Classes. Rather than abstracting information to suit a generic yet highly intelligent building model, the emphasis is on preserving the participant’s own thoughts and conversation about decisions and issues in order to create a forum for intelligent conversation as the design evolves.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_320
id 2006_320
authors Ahmad, Sumbul and Scott Chase
year 2006
title Grammar Representations to Facilitate Style Innovation - An Example From Mobile Phone Design
doi https://doi.org/10.52842/conf.ecaade.2006.320
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 320-323
summary Previous research in generative design has suggested that shape grammar transformations could be used for developing new design styles by the systematic modification of grammars that encode existing styles. Our research explores how such grammar transformations can be facilitated to be responsive to changes in design style requirements. For this it is important to consider the structure and organization of rules, as well as the description of the styles of designs generated by a grammar. Using an example of mobile phone design, we outline the development of a flexible grammar structure that is conducive to transformations. The grammar is augmented with a style description scheme based on the concept of semantic differential to map the style characteristics of grammar components. These measures could be significant for driving purposeful grammar transformations for style adaptation and innovation.
keywords Design grammars; style; product design; generative design
series eCAADe
email
last changed 2022/06/07 07:54

_id ddss2006-hb-433
id DDSS2006-HB-433
authors Eric Landreneau, Ozan O. Ozener, Burak Pak, Ergun Akleman, and John Keyser
year 2006
title Interactive Rule-Based Design - An experimental interface for conceptual design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 433-446
summary In this paper, we present a method that allows designers to interactively create partially self-similar manifold surfaces without relying on shape grammars or fractal methods. The modellers that are based on traditional fractal methods or shape grammars usually create disconnected surfaces and restrict the creative freedom of users. In most cases, the shapes through conventional fractal or shape grammar methods are defined by hard coded schemes that allow limited interactivity for the design process. We present a new approach for modelling such shapes. With this approach, we have developed a simple generative tool with given adjustable parameters to achieve variety of conceptual forms. Using this tool, designers can interactively create a variety of partially self-similar manifold surfaces.
keywords Fractal geometry, Conceptual design, Generative systems
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e171c
id sigradi2006_e171c
authors González Böhme, Luis Felipe and Vargas Cárdenas, Bernardo
year 2006
title Foundations for a Constraint-Based Floor Plan Layout Support in Participatory Planning of Low-Income Housing
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 283-287
summary We introduce the foundations of a novel approach that deals with constraint-based design methods to supporting participatory planning processes of low-income dwellings. We examine the space allocation problem inside the architectural domain on the basis of graph theory and combinatorics, providing a concise mathematical background for an implementation strategy called FLS (Floor plan Layout Support), which is analyzed here for the first time regarding this particular context of application. The philosophy underlying a design method that is mainly driven by the formulation of distinct constraints suggests to avoid the traditional procedure of first to create a yet not necessarily valid instance of the eventual design solution by directly choosing specific parameter values of its shape, and later on to evaluate its validity by confronting the designed model to a set of applicable constraints. Instead, constraint-based design poses a search procedure that operates in a space of planning-relevant constraint sets. The FLS methodology integrates some few principles of constraint-based automated reasoning with high user interactivity, into a design environment where as much dwellers as planners can collaboratively work in solving spatial organization problems of housing projects. The FLS model of application makes use of a combination of dweller-specified constraints, planning and zoning regulations, and a small library of modular space units. Constraint-based design ! methods are particularly capable of supplying efficient support for the collaborative involvement of dwellers into the architectural programming process of her/his own home. Mainly, because dwellers themselves tend to describe their space need and design intentions as a set of constraints on room quantity, space utilization, circulation system, allocation of available furniture, available budget, construction time, and so forth. The goal is to achieve an integrated tool for finding and modelling topologically valid solutions for floor plan layout alternatives, by combining user-driven interactive procedures with automatic search and generative processes. Thus, several design alternatives can be explored in less time and with less effort than using mainstream procedures of architectural practice. A FLS implementation will constitute one system module of a larger integrated system model called Esther. A FLS tool shall interact with other functional modules, like e.g. the BDS (Building Bulk Design Support), which also uses constraint-based design methods. A preliminary procedural model for the FLS was tested on Chile’s official social housing standards (Chilean Building Code – OGUC. Art. 6.4.1) which are very similar to most Latin American housing programs currently in operation.
keywords constraint-based design; floor plan layout; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2006_e048c
id sigradi2006_e048c
authors Beck, Mateus Paulo; Brener, Rafael; Giustina, Marcelo and Turkienicz, Benamy
year 2006
title Light and Form in Design – A Computational Approach
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 254-257
summary Shape perception is strongly influenced by the reciprocal relation between light and form. Computational applications can increase the number of design alternatives taking into account possible variations in the relation between light and form. The aim of this study is to discuss a pedagogical experience carried out with 5th semester architectural students, based on a series of exercises prior to the term project. The exercises were concerned with the relation between light and form from an aesthetical point of view and should be understood as examples for the use of computers as tools to creatively accelerate the process of design and learning. The paper is divided in five parts. The first one describes the conceptual background for the exercises, a descriptive method for the identification of light effects in architectural objects based on ideas of shape emergence. The exercises’ methodology is explained in the second part, referring to the use of computational applications in 3-dimensional modeling, material and light simulation. The methodology includes different phases: –creation of bi-dimensional compositions according to symmetry operations; –creation of a minimal living space assigning functions to spaces originated from the former composition; –analysis of the impact of light on the form and spaces created; –alteration of form and materials creating new light effects considering the functions related to the spaces. The exercises alternate work in computational environment in two and three dimensions with the use of mockups, lamps and photography. In the third part the results –student’s design steps– are described. In the fourth part the results are analyzed and some conclusions are outlined in the fifth and last part. The use of emergent forms combined with computational tools has proved to be an effective way to achieve an accelerated understanding of the impact of light on forms as demonstrated by the evolution of the students work during the term and by their final results concerning the term project.
keywords Architectural Design; Lighting; Design Simulation; Virtual Environment
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ijac20064405
id ijac20064405
authors Calderon, Carlos; Nyman, Karl; Worley, Nicholas
year 2006
title The Architectural Cinematographer: Creating Architectural Experiences in 3D Real-time Environments
source International Journal of Architectural Computing vol. 4 - no. 4, pp. 71-90
summary This paper addresses the problem of creating new navigation paradigms for experiencing architectural designs in 3D real-time environments. The exploration of techniques other than still images or fly-through animations is complex and manifold, and requires the understanding and skills of many disciplines including cinematography, computer programming, architectural design and communication of 3D space. In this article, we present the Architectural Cinematographer (AC), a first step towards new navigation paradigms for real-time interactive virtual environments that are intended to enhance architectural walkthroughs with interactive camera effects. The AC is a fully developed modification (mod) of the game UnrealTournament2004™ using the Unreal™ game engine and relies on the notions of architectural concepts, cinematographic techniques and game level design to structure the virtual environment (VE) content in a way that facilitates a perception of design qualities in virtual architecture. AC addresses the current lack of either software or a structured approach to facilitate this in real-time architectural visualizations.
series journal
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000004/art00006
last changed 2007/03/04 07:08

_id eaea2005_31
id eaea2005_31
authors Franke, Ronald
year 2006
title Space imagery - Model simulation as work equipment
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 31-36
summary The architectural design task involves the development of a building or an urban space, which communicates a social and cultural meaning and allows sensual experiences. Therefore, there is a need to design the building or urban space from the users view. In order to achieve this aim, architects use different methods and techniques of representation such as various kinds of drawings, models and images. The main impact of this is: Creating and developing the architectural form by drawing or modelling the architectural form. By using Video-Supported- Model-Simulation the benefits of representation can be utilised in a very simple way. The following report gives an introduction to - the method of Video-Supported-Model-Simulation - the principles for organisation the process of architectural design
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id ijac20064307
id ijac20064307
authors Goldberg, Sergio Araya
year 2006
title Computational Design of Parametric Scripts for Digital Fabrication of Curved Structures
source International Journal of Architectural Computing vol. 4 - no. 3, 99-117
summary This paper explores strategies for building toolchains to design, develop and fabricate architectural designs. It explains how complex curved structures can be constructed from flat standard panels. The hypothesis of this research is that by embedding ruled based procedures addressing generative, variational, iterative, and fabricational logics into early phases of design, both design techniques and digital fabrication methods can merge to solve a recurrent problem in contemporary architectural design, building double curved structures. Furthermore it achieves this using common fabrication methods and standard construction materials. It describes the processes of programming computational tools creating and developing designs to fabricate continuous complex curved structures. I describe this through a series of experiments, using parametric design environments and scripted functions, implementing certain techniques to fabricate these designs using rapid prototyping machines. Comparing different design and fabrication approaches I offer a discussion about universal application of programmed procedures into architectural design.
series journal
last changed 2007/03/04 07:08

_id ascaad2006_paper24
id ascaad2006_paper24
authors Lerma, José and Salim A. Elwazani
year 2006
title Digital Rectified Imagery: a survey method for design and conservation projects
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Faced with the need for understanding the physical context of the projects that come under their jurisdiction, architects, urban designers, and conservationists strive to secure congruent information. Practicing professionals are not set to carry out the collecting of information themselves. As information “users,” they reach out to information “providers,” including surveyors, photogrammetrists, and GIS specialists, to secure needed information. Information providers employ a gamut of methods to survey and document design project contexts, including land surveying techniques, stereophotogrammetry, rectified imagery, laser scanning, and GIS. This study deals with digital rectified imagery (DRI) only and is aimed at creating an awareness of the method characteristics in the minds of the information users toward taking advantage of available DRI documentation opportunities offered by the information providers. As part of the methodology for this study, the authors have selected a subject building, captured a number of images through a digital camera, and processed the images using image processing software. The significance of this study resides in enabling the information users to understand RDI and to tap on its potential for consummating design, planning, and conservation projects.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia06_461
id acadia06_461
authors Martens, Bob
year 2006
title Exploring the Design and Fabrication of Inflatables: “The Taming of the Shrew”
doi https://doi.org/10.52842/conf.acadia.2006.461
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 461-470
summary The building materials that help designers or architects achieve their goal of defining and enclosing space are usually concrete, steel, glass or wood. For these materials designers have both empirical data gained from experience and at times complex calculation methods enabling them to use them in their designs in a tangible, reckonable and, consequently, almost risk-free manner. It seems obvious that creating a design with well-known building materials will lead to more or less predictable outcomes. This is a good reason for investigating a design process dealing with air-filled building-elements. Architectural structures look completely different when one employs a “building material” which has not been subjected to either detailed investigations or sophisticated calculations. The “Smart_Air” Design Studio was devised to take a closer look at the unusual building material “air,” which we have only just begun to explore, and to make it the centre of a focused design exercise. The objective was to use “air” or, rather, pneumatic technologies, to arrive at structurally sound solutions for enclosing space, which could be considered a “roof” in the widest sense of the term.
series ACADIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_575296 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002