CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id c870
id c870
authors Derix, Christian
year 2006
title Approximating Phenomenological Space
source EGICE - Intelligent Computing in Engineering and Architecture
summary Architectural design requires a variety of representations to describe the many expressions a building can be observed through. Commonly, the form and space of a building are represented through the visual abstraction of projective geometry. The medium of geometric representation has become synonymous with architectural space. The introduction of computational design in architecture has not changed our understanding or representation of architectural space, only of its geometric description and production processes. The addition of the computer as a medium should allow us to open new ‘ways of seeing’ since the medium allows for novel descriptions and expressions via data processing hitherto impossible. This paper would like to propose some computational methods that could potentially describe and generate non-geometric but rather phenomenal expressions of architectural space.
keywords neural networks, architectural space, cognition, phenomena
series book
type normal paper
email
more http://www.springerlink.com/content/1j54337p42051p84/?MUD=MP
last changed 2012/09/17 21:02

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id ddss2006-hb-53
id DDSS2006-HB-53
authors Junfeng Jiao and Luc Boerboom
year 2006
title Transition Rule Elicitation Methods for Urban Cellular Automata Models
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 53-68
summary In this chapter, transition rules used in urban CA models are reviewed and classified into two categories: transition potential rules and conflict resolution rules. Then, four widely used rule elicitation methods: Regression analysis, Artificial Neural network (ANN), Visual calibration, and Analytical Hierarchy Processing - Multi Criteria Evaluation (AHP-MCE) are discussed. Most of these methods are data driven methods and can be used to elicit the transition potential rules in the urban CA models. In the following, three possible rule elicitation methods: Interview, Document analysis, and Card sorting are explained and demonstrated. These three methods are driven by knowledge and can be used to elicit conflict resolution rules as well as transition potential rules in urban CA models.
keywords Cellular Automata (CA), Simulation, Modelling, Transition rule, Elicitation
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e034d
id sigradi2006_e034d
authors Ryan, Rachel and Donn, Michael
year 2006
title A 3D, interactive, multilayered, web-enabled model as a tool for multiple sets of end user groups: A case study and end user analysis
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 392-396
summary This research undertakes a case study involving focus groups of potential end users, to identify how a successful digital tool could be created using new and emerging technologies, to accommodate the multiple needs of these end users. 2005 saw the completion of a research paper, which proposed that a single, 3 dimensional digital model of a city forming a core for many different information systems, is a better approach to the needs of the city than many individual models optimised for each information system. The case for the single 3D model was evaluated through the research, development, delivery and analysis of a prototype 3 Dimensional model of Wellington City, New Zealand, presenting different ‘views’ of information in Wellington: a rendered visualisation in an animated “walkthrough”; the impact of planning constraints on daylight; interactive “plots” of property values. The development and delivery of the prototype model was analysed in regards to how complex, costly and time consuming it may be to exploit one base model for several purposes; and also therefore how beneficial, affordable and potentially successful a single model may be. The prototype model was created to test the idea, and therefore provided conclusions based on a limited feasibility analysis - with four potential information layers modelled and two potential delivery methods tested. The prototype model and user analysis results were presented in a research report that suggested further research and development of a single model could be very beneficial: Positive feedback from potential end users and data providers, and examples of potential data mining opportunities forming the basis of the need for continued research. 2006 sees the research continue as an 18 month research project in conjunction with an industry partner, Terralink International, (http://www.terralink.co.nz/). Terralink International Limited provides GIS and mapping solutions which according to their web site: “enable better business management.” The company maintains a national resource of “imagery, cartography, and spatial databases” and provides consultancy services linking these to company databases through GIS systems. The research investigates the potential for 3 dimensional, interactive, multilayered models to enhance delivery of information to multiple end user groups. The research method uses functional prototypes in end-user focus group workshops. These workshops, consisting of a combination of presentations, hands on interactive examples, group discussions, and individual feedback surveys, aim to establish how a tool might best be developed to communicate to a wide range of end users. The means of delivery whether a stand alone tool or web-based is a key element of the user group workshop assessment process. Note: The submission of the prototype tool (via video or interactive media) would greatly increase the effectiveness of the research presentation. Ability to include such media would be greatly appreciated.
keywords multilayered; 3D; end users; interactive; web-enabled
series SIGRADI
email
last changed 2016/03/10 09:59

_id acadia06_483
id acadia06_483
authors Yan, Wei
year 2006
title Integrating Video Tracking and Virtual Reality in Environmental Behavior Study
doi https://doi.org/10.52842/conf.acadia.2006.483
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 483-488
summary One of the essential considerations in architectural design is how people use the built environments. Adequate study of environmental behavior can reveal significant information about that use. This research suggests applying new computing technologies to enhance environmental behavior study, in terms of effectiveness and efficiency. Specifically, this project will develop an integrated system of automatic video tracking and video-quality virtual reality. The integrated system will provide designers and behavioral scientists with substantial statistical measurements of end user behavior patterns. Furthermore it will enable them to walk through the virtual reality of the environments and interactively observe details of the behaviors from various viewpoints. Thus, this project can help obtain behavior data in different levels of details, and in a structured and planned way that can facilitate analysis of the data with maximum automation. The major significance of this project is an introduction of a rigorous new methodology into environmental behavior study to enhance first-person observation with state-of-the-art computing technologies. This research will be a novel application of virtual reality in environmental behavior study. We expect that it will fundamentally advance the methods behavioral scientists use to study human environmental behavior, and the ways architects evaluate architectural design in terms of human behavior.
series ACADIA
email
last changed 2022/06/07 07:57

_id ascaad2006_paper15
id ascaad2006_paper15
authors Anz, Craig and Akel Ismail Kahera
year 2006
title Critical Environmentalism and the Practice of Re-Construction
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This research focuses on the implications and applications of “critical environmentalism” as a quintessential epistemological framework for urban interventions while implementing digital applications that foster collective, round-table approaches to design. Essentially centering the environment (Umwelt) as an encompassing and interconnecting catalyst between multiple disciplines, philosophies, and modes of inquiry and technologies, the framework reciprocally fosters individual and critical identities associated with particular places, belief systems, and their participants as a primary concern. Critical environmentalism promotes a comprehensive, reciprocally unifying epistemological framework that can significantly inform architectural interventions and the tethered use of its technologies in order to foster increased vitality and a certain coinvested attention to the complexities of the greater domain. Grounding the theory in pedagogical practice, this paper documents an approach to urban design and architectural education, implemented as a case-study and design scenario, where divergent perspectives amalgamate into emergent urban configurations, critically rooted in the conditional partialities of place. Digital technologies are incorporated along with analogical methods as tools to integrate multiple perspectives into a single, working plane. Engaging the above framework, the approach fosters a critical (re)construction and on-going, co-vested regeneration of community and the context of place while attempting to dialogically converge multiple urban conditions and modes-of-thought through the co-application of various digital technologies. Critically understanding complex urban situations involves dialogically analyzing, mapping, and modeling a discursive, categorical structure through a common goal and rationale that seeks dialectic synthesis between divergent constructions while forming mutual, catalyzing impetuses between varying facets. In essence, the integration of varying technologies in conjunction, connected to real world scenarios and a guiding epistemic framework cultivates effective cross-pollination of ideas and modes through communicative and participatory interaction. As such it also provides greater ease in crosschecking between a multitude of divergent modes playing upon urban design and community development. Since current digital technologies aid in data collection and the synthesis of information, varying factors can be more easily and collectively identified, analyzed, and then simultaneously used in subsequent design configurations. It inherently fosters the not fully realized potential to collectively overlay or montage complex patterns and thoughts seamlessly and to thus subsequently merge a multitude of corresponding design configurations simultaneously within an ongoing, usable database. As a result, the pedagogical process reveals richly textured sociocultural fabrics and thus produces distinct amplifications in complexity and attentive management of diverse issues, while also generating significant narratives and themes for fostering creative and integrative solutions. As a model for urban community and social development, critical environmentalism is further supported the integrative use of digital technologies as an effective means and management for essential, communicative interchange of knowledge and thus rapprochement between divergent modes-of-thought, promoting critical, productive interaction with others in the (co)constructive processes of our life-space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ijac20064301
id ijac20064301
authors Bermudez, Julio; Agutter, Jim; Foresti, Stefano
year 2006
title Architectural Research in Information Visualization: 10 Years After
source International Journal of Architectural Computing vol. 4 - no. 3, 1-18
summary As our civilization dives deeper into the information age, making sense of ever more complex and larger amounts of data becomes critical. This article reports on interdisciplinary work in Information Visualization addressing this challenge and using architectural expertise as its main engine. The goal of this research is to significantly improve real time decision making in complex data spaces while devising a new architecture that responds to complex information environments. Although we have been reporting in aspects of this work for the past 7 years, this paper covers unpublished knowledge, design methods, operational strategies, and other details that bring together all the material published by our group thus far into a comprehensive and useful whole. We conclude by presenting our latest InfoVis design work in Network Security.
series journal
last changed 2007/03/04 07:08

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_656
id 2006_656
authors Breen, Jack and Martijn Stellingwerff
year 2006
title De-coding the Vernacular - Dynamic Representation Approaches to Case-based Compositional Study
doi https://doi.org/10.52842/conf.ecaade.2006.656
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 656-663
summary Representational approaches have always played an important role in the design-driven development of built environments, the analytical study of architectural compositions and their effects. With the introduction – and successive steady development – of computer-based platforms of visualization, the professional and intellectual palette of designers, as well as researchers, have expanded considerably. Nonetheless, in recent years the opportunities for systematic scrutiny and understanding of the expressive qualities of design proposals and artefacts have all too frequently been overshadowed by high-flying conceptual developments and seductive representation modes. It is time that the objective description and unravelling of architectural compositions – so to speak the discipline of Ekphrasis in design practice, education and research – is once again given more prominence in architectural discourse and debate. The central idea behind this contribution is that, by linking instruments of design with the methods of formal composition and decomposition, renewed opportunities for representation-driven study in a scholarly context, focusing upon elusive compositional attributes and their workings, may be given a new impulse. The project that is presented here concerns a case-based explorative study into the domains of aesthetic convention and invention, making use of a variety of virtual and physical representation techniques. These include digital as well as tangible modelling and sketching approaches (separately and in combination), in conjunction with computer-based image manipulation techniques, making use of systematic data identification and denotation. The opportunities, merits and shortcomings of the computer-based and physical visualization approaches, which were applied and tested, are discussed on the basis of results and findings from the ongoing AA Variations project.
keywords Design representation; Computer-based sketching; Virtual and physical modelling; Compositional variation; Contemporary aesthetics
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2006_e033b
id sigradi2006_e033b
authors Castillo, Tim
year 2006
title Hybrid[s] : new pedagogical applications for designing our evolving spatial environment
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 131-136
summary The continual emergence of new informational and technological systems has impacted our cultural landscape. As society continues to evolve, we are becoming more connected to virtual systems that impact our spatial environment. The awareness and understanding of these invisible forces requires new curricular pedagogies in architectural education. This paper will document an ongoing course that was developed to research new methodologies for working with haptic environments and informational systems. Utilizing a high performance-computing center, students in the class are developing new adaptive intelligent spatial systems that engage a multiplicity of scales. They researched environments for PDA’s (Personal Data Assistance), I-Pods, cellular phones, GPS (Guidance Positioning Systems) and a new immersive virtual dome environment. The goal of the class was to reevaluate how architectural practice in the future will encompass a more holistic approach to both physical and virtual spatial development.
keywords Design tools and methods
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia06_302
id acadia06_302
authors Clarke, Cory
year 2006
title Synthetic Dissemination
doi https://doi.org/10.52842/conf.acadia.2006.302
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 302-303
summary Synthetic Dissemination, within the context of architecture and information culture, offers seemingly contradictory possibilities. The ends of dissemination and synthesis are at odds. The purpose of the former being diffusion and distribution, and the byproduct of the latter being quite the opposite - namely the combination and association of information into a coherent whole. The conjoining of dissemination and synthesis implies these two contradictory operations can operate in a symbiotic or complementary manner.Relative to architecture and design the combination of dissemination and synthesis is potentially profound. The marriage of synthesis and dissemination presents a possibility that the method of distributing information could be, or have embedded within it, a synthetic process. In the simplest sense synthetic dissemination implies that the tools for design and synthesis could be the same as tools for documentation and dissemination; or more specifically that the fluidity and creativity of design software could be coupled with the practicality and meticulousness of building information modelers (BIM). More abstractly synthetic dissemination implies that the means of encoding and distributing information could propagate design. Architects have readily adopted digital tools for encoding and presenting their ideas, but have not fully recognized how the informational structures of these applications promote or hinder design. Developments in the information architecture of D software, such as the shift from geometrically based data structures to procedurally based directed action graphs (DAG) as seen in Maya and DMax, have opened up innovative methods of architectural design. Each new change in the information architecture of design software ushers in new approaches to design, raising the question - how does the production and storage of information affect design? More broadly, how can the tools of dissemination facilitate synthesis?
series ACADIA
email
last changed 2022/06/07 07:56

_id sigradi2006_c169c
id sigradi2006_c169c
authors Culagovski Rubio, Rodrigo and Guevara S., Sebastián
year 2006
title Arquitectura, Datos y Forma: Una primera aproximacion instrumental. [Architecture, data and form: A first instrumental approach]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 268-272
summary The production of forms via iterative computational processes allows designers to operate on datasets that would be to large to be managed via traditional analog methods. This fact opens the door to new aesthetic and formal experimentation as well as attempts to reference or influence large scale phenomena such as geographical or network based sitatuations. This document presents the results of a series of investigations into the creation of algorithmic and parametric methods or instruments that could inform architectural practice. The work was done by the authors within the Masters of Architecture Program of the Catholic University of Chile.
series SIGRADI
email
last changed 2016/03/10 09:49

_id bsct_dervishi
id bsct_dervishi
authors Dervishi, Sokol
year 2006
title Computational Derivation of Incident Irradiance on Building Facades based on Measured Global Horizontal Irradiance Data
source Vienna University of Technology; Building Science & Technology
summary Reliable simulation of buildings' energy performance requires, amongst other things, the availability of detailed information on the magnitudes of incident solar radiation on building facades. However, the availability of the measured data concerning the incident solar radiation on vertical surfaces is restricted to only few locations. In addition, concurrent measurements of horizontal global and horizontal diffuse (or direct normal) irradiance data are likewise available only for a limited number of locations. In contrast, global horizontal irradiance data is available for many locations. This research demonstrates how to computationally derive incident irradiance values on vertical (or otherwise inclined) building surfaces from measured globalirradiance values. Given this context, three methods are considered to compute incident vertical irradiance values based on measured global horizontal irradiance data. Vertical solar irradiance measurements are described. Then, the computationally derived values are compared withcorresponding measurements. The results are evaluated based on their correlation coefficients and relative error. Finally, the application of horizontal-to- vertical irradiance mapping is demonstrated using the case of an office building at Vienna University of Technology.
keywords Horizontal and vertical irradiance, measurement and simulation, energy performance
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:30

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2006_561
id caadria2006_561
authors HONG-SHENG CHEN, CHAN-JUI LIU
year 2006
title AN ADAPTIVE DESIGN SUPPORT SYSTEM FOR INTERACTIVE IMAGE SEARCHING WITH DATA MINING METHODOLOGY
doi https://doi.org/10.52842/conf.caadria.2006.x.g8b
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 561-563
summary This study explodes a domain where the use of pictures is essential [Sabrina Kacher 2002]. Designers need a way to rapidly get image. Recent years, there are more and more companies start to store and sale images for designers. They try to use hypermedia or website system to support designers when they need images.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20064306
id ijac20064306
authors Klinger, Kevin R.; Vermillion, Joshua
year 2006
title Visualizing the Operative and Analytic: Representing the Digital Fabrication Feedback Loop and Managing the Digital Exchange
source International Journal of Architectural Computing vol. 4 - no. 3, 79-97
summary Digital architecture is process-based and reliant upon a conversation between digital visualization, analysis, and production. With the complexity of information generated in process-based digital practices, we need to effectively manage and exchange the information. Feedback loops are integral to this process/product, and thus require extensive management of complex versions of visual and data related information. Quite a lot of scholarly attention has been focused upon highlighting innovative projects using digital fabrication and serial customization. However, there is a scarcity of scholarly work about innovations in visualizing and representing the design data integral in this feedback loop. This paper will examine innovative representational devices such as the matrix, sectioning, layering, bracketing, nesting, and other new forms of organizing, visualizing, analyzing, and simulating complex data, intent upon communicating multiple levels of operations during the design and fabrication process. With a rigorous taxonomy of operative and analytic devices for process-based digital design development, we can begin to outline a trajectory for future evolutions in practice. This writing is an attempt to make a few steps in this direction, and demonstrate some of these new representational ideas in practice.
series journal
last changed 2007/03/04 07:08

_id fcb4
id fcb4
authors Loemker, Thorsten Michael
year 2006
title Solving Revitalization-Problems by the Use of a Constraint Programming Language
source IKM 2006, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, July 2006
summary This research focuses on an approach to describe principles in architectural layout planning within the domain of revitalization. With the aid of mathematical rules, which are executed by a computer, solutions to design problems are generated. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a problem, an exemplary method will be described to solve such problems in architectural layout planning. To avoid conflicts relating to theoretical subtleness, a customary approach adopted from Operations Research has been chosen in this work [1]. In this approach, design is a synonym for planning, which could be described as a systematic and methodical course of action for the analysis and solution of current or future problems. The planning task is defined as an analysis of a problem with the aim to prepare optimal decisions by the use of mathematical methods. The decision problem of a planning task is represented by an optimization model and the application of an efficient algorithm in order to aid finding one or more solutions to the problem. The basic principle underlying the approach presented herein is the understanding of design in terms of searching for solutions that fulfill specific criteria. This search is executed by the use of a constraint programming language.
keywords Revitalization, Optimization, Constraint Programming, OPL
series other
type short paper
email
more http://euklid.bauing.uni-weimar.de/ikm2006-cd/data/templates/papers/f26.pdf
last changed 2008/10/13 14:02

_id ascaad2006_paper3
id ascaad2006_paper3
authors Luesche, Andreas and Salim Elwazani
year 2006
title Adapting Digital Technologies to Architectural Education Need
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Adapting digital technologies to architecture school settings is a topic of universal interest. Properly construed, adapting digital technologies to architectural education emanates from philosophical underpinnings. For architectural programs, the scientific-artistic attribute notion can be a powerful reference for mapping program mission, goals, and curriculum. A program plan developed with scientific-artistic attributes of performance in mind can tap on the use of digital media from the perspective that the media has scientific-artistic characteristics itself. Implementation of digital technologies adaptation can be challenged, among other things, by scarcity in resources. This paper focuses on the role of digital equipment resources in adaptation. A case in point is the use of digital technologies at the Architecture and Environmental Design Studies (Arch/EDS) Program of Bowling Green State University. The study considered the utilization by the third and fourth year design studio students of the digital resources at the Center for Applied Technology, a College based, but University wide serving unit. The objective of the study was to build up a theoretical understanding of the adaptation problem and come up with strategy guidelines for adapting digital media resources to architectural education. A survey of students and interviews with the Center’s personnel were methods used to collect data. The study has placed the adaptation problem in a philosophical context, turned out a set of theoretical generalizations about digital utilization, and suggested strategy adaptive guidelines. Beyond facilitating adaptation specific to the Arch/EDS Program, the results of the study are bound to affect digital adaptation in a general sense.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia06_461
id acadia06_461
authors Martens, Bob
year 2006
title Exploring the Design and Fabrication of Inflatables: “The Taming of the Shrew”
doi https://doi.org/10.52842/conf.acadia.2006.461
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 461-470
summary The building materials that help designers or architects achieve their goal of defining and enclosing space are usually concrete, steel, glass or wood. For these materials designers have both empirical data gained from experience and at times complex calculation methods enabling them to use them in their designs in a tangible, reckonable and, consequently, almost risk-free manner. It seems obvious that creating a design with well-known building materials will lead to more or less predictable outcomes. This is a good reason for investigating a design process dealing with air-filled building-elements. Architectural structures look completely different when one employs a “building material” which has not been subjected to either detailed investigations or sophisticated calculations. The “Smart_Air” Design Studio was devised to take a closer look at the unusual building material “air,” which we have only just begun to explore, and to make it the centre of a focused design exercise. The objective was to use “air” or, rather, pneumatic technologies, to arrive at structurally sound solutions for enclosing space, which could be considered a “roof” in the widest sense of the term.
series ACADIA
email
last changed 2022/06/07 07:59

_id caadria2006_237
id caadria2006_237
authors N.BILORIA, K.OOSTERHUIS, C. AALBERS
year 2006
title DESIGN INFORMATICS: (A case based investigation into parametric design, scripting and CNC based manufacturing techniques)
doi https://doi.org/10.52842/conf.caadria.2006.x.q9e
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 237-244
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for envisaging complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This design-research approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. The hence extorted ‘point cloud’ configuration serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed script-routines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct hence enabling timely and effective construction of the conceptualized form.
series CAADRIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_158012 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002