CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id ecaade2016_132
id ecaade2016_132
authors Mohite, Ashish and Kotnik, Toni
year 2016
title Model Translations - Studies of translations between physical and digital architectural models
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2016.1.561
wos WOS:000402063700061
summary With the rise of the digital in architecture and the availability of digital fabrication tools, the interest in the material aspect of the model has intensified. At the same time, the design space for exploration of material behavior and its design potential has been extended from the physical into the digital. This has resulted in a cyclic set of translations from the physical realm into the digital by means of mathematical descriptions and back from the digital realm into the physical by means of digitally controlled fabrication processes. Despite the availability of more and more computational power and improvement of precision in simulation, these translations from the physical into the digital and vice versa can never be exact (Eco 2006), the translations from the physical model into a digital model and from the digital into the physical are "spaces of instability" (Evans 2000). The current paper explores in more detail this space of instability between physical and digital models, its potential for architectural design, and the central role of the mathematical description in this reciprocal set of translations.
keywords Architectural model; simulation; digital fabrication; material computation; material behavior
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id 2006_168
id 2006_168
authors Papalexopoulos, Dimitris
year 2006
title Digital Territories and the Design Construction Continuum
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 168-174
doi https://doi.org/10.52842/conf.ecaade.2006.168
summary The purpose of the paper is to bring together the two newly elaborated concepts of Digital Territories (DT) and Design Construction Continuum (DCC) in order to approach the design of evolving – intelligent environments.Digital Territories is a concept elaborated 2005 by a Core Expert Group, conceived as an ephemeral Ambient Intelligence (AmI) space. DTs formed through the interconnection of physical objects embedding digital technologies, postulate the integration of the physical and the digital world, searching for operative definitions of new evolving in time functionalities. In DT’s, bridges between the physical and the digital are discrete elements disposing of certain autonomy in their conception and internal structure. Bridges have to be designed and located. The DCC proposes to relate design, fabrication and construction through information networks (it is in fact a DT). Through the DCC approach, design information is becoming construction information and industrial fabrication information. The DCC has to integrate interaction design and respond to questions posed by DTs design. DTs are integrated to DCC by constituting an intermediate level between building programming and design. Intelligent Building Components, that is AmI components operating as bridges between the physical and the digital in Digital Territories formations, cooperating to develop swarm intelligence applications to architectural space, are elements managed by the DCC. DT’s are about spaces communicating and the DCC is about communicating (design) space.
keywords Digital Territories; Design Construction Continuum; Interaction Design; Evolving Environments; Intelligent Environments; Location Diagrams; Building Programming
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2013_135
id caadria2013_135
authors Williams, Nick; Daniel Davis, Brady Peters, Alexander Peña De León,  Jane Burry and Mark Burry
year 2013
title FabPOD: An Open Design-to-Fabrication System
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 251-260
doi https://doi.org/10.52842/conf.caadria.2013.251
wos WOS:000351496100025
summary Digital workflows from the design to the production of buildings have received significant recent attention in architectural research. The need for both integrated systems for design collaboration (Boeykens and Neuckermans, 2006) and clear and flexible communication flows for non-standard fabrication outcomes have been identified as fundamental (Scheurer, 2010). This paper reports on the development of a digital “design system” for the design and prototyping of an acoustic enclosure for meetings in a large open work environment, theFabPod. The aim was to keep this system open for temporal flexibility in as many aspects of the finalisation of the design as possible. The system provides novel examples of both integrated collaboration and clear communication flow.  (1) Acoustics is included as a design driver in early stages through the connection of digital simulation tools with design models. (2) Bi-directional information flows and clear modularisation of workflow underpins the system from design through to fabrication and assembly of the enclosure. Following the completion and evaluation of the FabPod prototype, the openness of the system will be tested through its application in subsequent design and prototyping iterations. Design development will respond to performance testing through user engagement methods and acoustic measurement.  
keywords Digital workflow, Prototyping, Acoustic simulation, Collaborative design 
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2006_e070c
id sigradi2006_e070c
authors Cardoso, Daniel
year 2006
title Controlled Unpredictability: Constraining Stochastic Search as a Form-Finding Method for Architectural Design
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 263-267
summary Provided with a strict set of rules a computer program can perform the role of a simple designer. Taking advantage of a computer’s processing power, it can also provide an unlimited number of variations in the form while following a given set of constraints. This paper delineates a model for interrelating a rule-based system based on purely architectural considerations with non-deterministic computational procedures in order to provide controlled variations and constrained unpredictability. The experimental model consists of a verisimilar architectural problem, the design of a residential tower with a strict program of 200 units of different types in a given site. Following the interpretation of the program, a set of rules is defined by considering architectural concerns such as lighting, dimensions, circulations, etc. These rules are then encoded in a program that generates form in an unsupervised manner by means of a stochastic search algorithm. Once the program generates a design it’s evaluated, and the parameters on the constraints are adjusted in order to produce a new design. This paper presents a description of the architectural problem and of the rule building process, images and descriptions of three different towers produced, and the code for the stochastic-search algorithm used for generating the form. The succesful evolution of the experiments show how in a computation-oriented design process the interpretation of the problem and the rule setting process play a major role in the production of meaningful form, outlining the shifting role of human designers from form-makers to rule-builders in a computation-oriented design endeavour.
keywords Architectural Design; Stochastic; Random; Rule-based systems; Form-generation
series SIGRADI
email
last changed 2016/03/10 09:48

_id ijac20053403
id ijac20053403
authors Datta, Sambit; Beynon, David
year 2005
title A Computational Approach to the Reconstruction of Surface Geometry from Early Temple Superstructures
source International Journal of Architectural Computing vol. 3 - no. 4, 471-486
summary Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id caadria2006_081
id caadria2006_081
authors JÖRG RÜGEMER
year 2006
title WEB BASED DESIGN AND COMMUNICATION PEDAGOGY : Group pedagogy and the implementation of web-based technologies within the design process
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 81-90
doi https://doi.org/10.52842/conf.caadria.2006.x.p2s
summary The success of the international Zollhof project in Düsseldorf, Germany, in which virtual communication played a crucial role, was the catalyst for introducing interdisciplinary digital methods in the field of teaching. The firm of Frank O. Gehry and Associates, Santa Monica, California, served as an initial field of experimentation in order to bring together a heterogeneous group of project partners to participate in the design and construction phases of the Zollhof project. The design development, construction document, and construction phase was considerably enhanced by the employment of digital media as a communication and information tool. Parallel to the design process in the office in Santa Monica, a line of information flow and management had to be established to connect the local design team with consultants that were located in Europe and specifically in Germany. This line of communication required the team to send precise descriptions of project steps to the participants abroad, as well as receiving and processing a flow of responses returning to the Santa Monica office in very short intervals. By advancing and documenting each design and development step, the project progression was clearly documented by the project teams and thus understandable to everybody involved. The process demanded a highly articulated project description in text and images that were refined and exchanged daily. This helped to strengthen the cooperation between the design team and the project consultants and started to dissolve the role of the prime architect or designer toward a more team-related and democratic structure. All participants had quick access to all necessary information, which set aside the vertical hierarchy in favor of transparent communication tools and platforms.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2006_217
id caadria2006_217
authors KILIAN, AXEL
year 2006
title DESIGN EXPLORATION WITH CIRCULAR DEPENDENCIES: A chair design experiment
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 217-226
doi https://doi.org/10.52842/conf.caadria.2006.x.q2e
summary The paper demonstrates the need for advanced models of representation for circular dependency networks common in design problems that deal with multiple constraints. Constraints in a design problem are generally perceived as limitations to design exploration. The careful construction of constraint relationships can help to turn constraints into design drivers for the problem instead. Closely related to the notion that new goals may emerge from creating designs is the idea that one goal of planning may be the design activity itself (Simon 1981). The interplay of many constraints can lead to circular dependencies that make design exploration a challenge as any change causes ripples throughout the entire design construct. D’Arcy Thompson (1942) describes form as a diagram of forces. The construction of design representations that reflect such dependency networks pose a challenge and are far from exact matches of the task environment (Simon 1981). The paper proceeds in mapping these abstract observations of the circular dependencies in the design process to a chair experiment from design to fabrication giving detailed descriptions of the interdependencies of material, fabrication and aesthetic constraints. The experiment shows how those constraints were instrumental in achieving the aesthetics of the full scale prototype.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:49

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
doi https://doi.org/10.52842/conf.acadia.2006.230
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_440
id acadia06_440
authors Bell, Brad
year 2006
title The Aggregate of Continuum
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 440-454
doi https://doi.org/10.52842/conf.acadia.2006.440
summary The Traversable Matrix (Fig. 1.) illustrates the iterative fragments that comprise the continuum of exploration for a digital aesthetic and digital tectonic. These non-hierarchical fragments operate as footholds across a larger tessellated landscape of current digital design explorations. In seeking an organizational strategy, we attempt to move laterally across a variety of examples, texts, and illustrations. Each short excerpt is a partial architecture illustrating deeper issues in the current discussion of digital fabrication. Though counter to conventional academic inquiry, the associative approach can help frame the matrix; the synthetic landscape traversed becomes less linear, less framed but no less interconnected and cohesive. The patterning of complex geometries, the production of ornament, the leveraging of digital fabrication against standard forms of material and construction practices, and the acute emphasis on surface all serve as the aggregate to a broader spectrum of architectural thinking and architectural making.Introduction: The Traversable Matrix
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_489
id acadia06_489
authors Bonswetch, T., Kobel, D., Gramazio, F., Kohler, M.
year 2006
title The Informed Wall: applying additive digital fabrication techniques on architecture
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 489-495
doi https://doi.org/10.52842/conf.acadia.2006.489
summary In this work in progress report we present the results of a four week design studio with graduate students as part of a broader research project on investigating digital additive fabrication processes and their implications on architectural design.In a simple test arrangement we realized the digital design and additive fabrication of two by three meters brick walls. The use of bricks, being the primary module for construction, and at a relatively coarse resolution, allowed us to concentrate on the design of completely programmed walls encompassing material-dependent parameters. The resulting prototypes depict the great potential of the integration of the design and the fabrication process. Non-standardized solutions can be easily accomplished as the design data is directly used to control the fabrication process. In using an additive digital fabrication process, a novel architectural product of the kind “brick wall” emerged, which could not have been conceived or fabricated manually.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_150
id acadia06_150
authors Boza, Luis Eduardo
year 2006
title (Un) Intended Discoveries Crafting the Design Process
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 150-157
doi https://doi.org/10.52842/conf.acadia.2006.150
summary Computer Numeric Controlled (CNC) fabrication machineries are changing the way we design and build. These technologies have increased productivity through greater efficiencies and have helped to create new forms of practice, including increased specializations and broader collaborative approaches. (Kieran Timberlake 2003: 31). However, some argue that these technologies can have a de-humanizing effect, stripping the human touch away from the production of objects and redistributing the associated skills to machines. (Dormer 1997: 103). The (Digital) Craft studio explored the notions of technology and craft to understand how and when designers should exploit the tools employed (both the hand and the machine) during the design and production processes.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_c048c
id sigradi2006_c048c
authors Bruscato Portella, Underléa
year 2006
title I+D _ Ideación Digital en la Arquitectura Actual [I+D_Digital ideas in contemporary architecture]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 258-262
summary Based on study of recent projects develop by reputed architectural firms, this paper reviews the role of digital techniques in the conception of design, describing mainly the proposals for Philarmonic Orchestra of Copenhagen by Jean Nouvel and the Harbour of Tenerife by Herzog and De Meuron, Both projects state innovative architectural concepts with diverse graphic resources. Digital media is not used as a specific tool, but as an integrated repertoire related to design issues, Image processing, photo-collages, 3D modelling, renderings, colored layouts and graphic sequences are applied to explore novelty shapes, spatial qualities, functional arrangements and constructive strategies. In these cases computer technologies are participating in design generation supporting overall architectural creativity. In order to benefit from new design media that approach express the relevance of firms' culture related to innovation and development (I+D).
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
doi https://doi.org/10.52842/conf.acadia.2006.148
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_c133d
id sigradi2006_c133d
authors Castañé, Dora
year 2006
title Rosario, Views on the Integral Revitalization of a Cultural Heritage
source SIGraDi 2006 - [10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006
summary This work shows the study of the methods and techniques for the development of a virtual vision VRML 3D included in an "Digitally-integrated knowledge base" with interactive interphases of a significantly revitalized fragment of a central area of the city of Rosario, Province of Santa Fé, Argentina, that includes an emblematic heritage for the Argentineans: the National Monument to the Flag. Digital models that partly allow the development of a hypothesis of integration between the digitized information and information technology - new digital proximity - to the effects of being able to investigate the generation of multimedia database that includes three-dimensional and dynamic models of the mentioned type, in this case, urban, architectonic, and cultural heritage. Different views and research on heritage have been developing. Nevertheless, the use of these new 3D non-immersive technologies and inter-phases are opening a new field of vision and understanding of the subject.
keywords Urban-architectural planning; heritage; virtual reality
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:48

_id sigradi2006_p016d
id sigradi2006_p016d
authors Cavalcanti Neto, José Rodrigues and Leão de Amorim, Arivaldo
year 2006
title Simulação digital: modelos digitais fotorealísticos no mapeamento e quantificação de patologias em projetos de restauração [Digital Fabrication: photo realistic digital models on  mapping and quantifing the pathologies in restoration design]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 341-345
summary This article is about the experience in the use of digital threedimensional models as an auxiliary tool in the phase of diagnosis on an architecture project of restoration. At first it deals with the importance and the methodology usually used in development of those projects. After telling about an experience that urged to look for new solutions, it was made a first exercise searching a new tool. It had about positive points the fact of being modeled quickly, to have made possible a clear vision of the pathologies and for being easily manipulable, providing a dynamic visualization of the construction. Another experience looked for the possibilities of analysis and quantification of damages in a photorealistic model. Afterwards analyzing the different potentials and restrictions of each accomplished experiment, this work looks for point out news ways that can be followed.
series SIGRADI
email
last changed 2016/03/10 09:48

_id ddss2006-pb-415
id DDSS2006-PB-415
authors Ching-Shun Tang
year 2006
title Smart Structure: Designs with Rapid Prototyping
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 415-429
summary This research presents the new orientation of the combination of digital modelling with generative programming and joint method of traditional wood structure for manipulating Rapid Prototyping to explore the assembling of free form objects. The presenting of the example indicates that the edition of Maya scripts defines the purpose of design. Through the discussion on scripts developing the assembly of the free-form objects of frames and surfaces and through the achievement that RP produces and examines objects, we bring out the possibilities of the new form developed from the old structure and illustrate how to develop our hypothesis. The developed result could provide the possible new way for free-form assembly. We expatiate our research process and final achievement and provide a new thinking direction in the education field.
keywords CAD/CAM, Digital fabrication, Rapid prototyping, Traditional wood structure
series DDSS
last changed 2006/08/29 12:55

_id 2006_190
id 2006_190
authors Chiu, Mao-Lin and Chien-Rung Lou
year 2006
title Teaching Tectonic Design Studio with A Digital Design Approach
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 190-197
doi https://doi.org/10.52842/conf.ecaade.2006.190
summary Digital design education is shifting from software and hardware application to issue-based, methodology-driven and technology-driven exploration. The attempts in design education have to address the future needs for architects, for instance the tectonic design. Our design studio tries to structure the design process to help students understand the principles and use the digital technology to operate tectonic design issue in the process. The dialogue with the materials (virtual and physical ones) is integrated with the exercises. The attempts in the design studio undertaken in National Cheng Kung University provide the foundation for observation and discussion. The pedagogy and approaches are examined, and the potential directions are reported.
keywords Design studio; digital design; tectonic design; design education
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2006_245
id caadria2006_245
authors CHOR-KHENG LIM
year 2006
title TOWARDS A FRAMEWORK FOR DIGITAL DESIGN PROCESS: In terms of CAD/CAM fabrication
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 245-252
doi https://doi.org/10.52842/conf.caadria.2006.x.r2i
summary This research aims to understand deeply the unique features of the CAD/CAM media tools and their applications, and come up with an initial framework of architectural design and construction process involving the use of CAD/CAM fabrication aids.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2006_e172c
id sigradi2006_e172c
authors Donath, Dirk and González Böhme, Luis Felipe
year 2006
title A Constraint-Based Building Bulk Design Support
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 278-282
summary We introduce an architecture practice-oriented implementation strategy of constraint-based methods called BDS (Building Bulk Design Support) to supporting bulk analysis during the architectural programming phase. We examine the optmization problem of site coverage and building massing according to a set of standard planning and zoning regulations, and try a problem solving approach based on the paradigm of constraint satisfaction problems. The case study, which is focused on the paticipatory planning of very low-income dwellings within the Latin American context, serves as testbed for a prototypical application of the adopted methodology. The BDS constitutes a novel approach on computer-aided bulk analysis, regarding this particularly relevant context of application. In the case of participatively planned low-income housing projects, efficiency regarding time and cost of planning directly affects dwellers’ quality of life, whereas elementary programming tasks such as bulk analysis lack appropriate state-of-the-art technological support. Traditional architectural planning methods demand a large domain-specific knowledge base and skillful planners. A planning process, which is mainly driven by the formulation of planning-relevant constraints and sets of solution alternatives, suggests to avoid architects’ traditional procedure of: 1. Create an (yet not necessarily valid) instance of the eventual design solution by directly choosing specific values for its shape parameters. 2. Evaluate its validity by confronting the designed model to a set of applicable constraints, which have to be satisfied. Instead, the constraint-based design methodology poses a search procedure that operates in a space of pertinent constraint sets. A computer-aided interactive search procedure to find more valid design solution alternatives in less time and with less effort is particularly qualified to supply efficient support for participatory planning activities carried out between dwellers and planners. The set of solutions for a building-bulk design problem is constrained by both a large complex system of planning and zoning regulations and the geometry of the eventual design solution itself. Given a considerable amount of such regulations, a regular size geometric constraint satisfaction system proved to be capable of providing a highly efficient, interactive modeling and evaluation tool for the formulation in real time of valid solution alternatives for an ordinary building-bulk design problem. A BDS implementation will constitute one system module of a larger integrated system model called Esther. A BDS tool shall interact with other functional modules, like e.g. the FLS (Floor plan Layout Support), which also uses constraint-based design methods.
keywords constraint-based design; bulk analysis; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_425539 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002