CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 612

_id ascaad2006_paper8
id ascaad2006_paper8
authors Abdullah, Sajid; Ramesh Marasini and Munir Ahmad
year 2006
title An Analysis of the Applications of Rapid Prototyping in Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Rapid prototyping (RP) techniques are widely used within the design/manufacturing industry and are well established in manufacturing industry. These digital techniques offer quick and accurate prototypes with relatively low cost when we require exact likeness to a particular scale and detail. 3D modeling of buildings on CAD-systems in the AEC sector is now becoming more popular and becoming widely used practice as the higher efficiency of working with computers is being recognized. However the building of scaled physical representations is still performed manually, which generally requires a high amount of time. Complex post-modernist building forms are more faithfully and easily represented in a solid visualization form, than they could be using traditional model making methods. Using RP within the engineering community has given the users the possibility to communicate and visualize designs with greater ease with the clients and capture any error within the CAD design at an early stage of the project or product lifecycle. In this paper, the application of RP in architecture is reviewed and the possibilities of modeling architectural models are explored. A methodology of developing rapid prototypes with 3D CAD models using methods of solid freeform manufacturing in particular Fused Deposition Modeling (FDM) is presented and compared against traditional model making methods. An economical analysis is presented and discussed using a case study and the potential of applying RP techniques to architectural models is discussed.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e159b
id sigradi2006_e159b
authors Barrow, Larry
year 2006
title Digital Design Pedagogy - Basic Design - CADCAM Space Box Exploration
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 127-130
summary This proposed paper will highlight the work of a “pre-architecture” graduate student’s work produced in a “Digital Design II” course in Spring 06. This student has a bachelor’s degree in Architectural Technologies and hopes to attend a “professional” degree program in architecture after completing our Master of Science degree program. The student entered our “pre / post-professional” graduate program as a means of learning more about design, technology and architecture. This provided a rare opportunity to do “research” in the area of digital technology in the early formative phases of a new architecture / design students development. The student chose to study “shadows” as a means of design inquiry. The primary focus of the work was the study of various “4” x 4” x 4” “space-cubes.” The student was given various “design” constraints, and “transformative” operations for the study of positive-negative space relationships, light+shadows, and surface as a means of gaining in-sight to form. The CADCAM tools proved to be empowering for the student’s exploration and learning. With the recent emergence of both more user-friendly hardware and software, we are seeing a paradigm shift in design “ideation.” This is attributed to the evolving human-computer-interface (HCI) that now allows a fluidic means of creative design ideation, digital representation and physical making. Computing technology is now infusing early conceptual design ideation and allowing designers, and form, to follow their ideas. The argument will be supported with primary evidence generated in our pedagogy and research that has shown the visualization and representational power of emerging 2D and 3D CADCAM tools. This paper will analyze the basic “digital design” process used by the writer’s student. Architectural form concepts, heretofore, impossible to model and represent, are now possible due to CADCAM. Emerging designers are integrating “digital thinking” in their fundamental conceptualization of form. These creative free-forms are only feasible for translation to tectonic form using digital design-make techniques. CADCAM tools are empowering designers for form exploration and design creativity. Current computing technology is now infusing the creative design process; the computer is becoming a design “partner” with the designer and is changing form and architecture; thus, we are now seeing unprecedented design-make creativity in architecture.
keywords Basic Design; CADCAM; Digital Design; Virtual 3D Models; Physical 3D Printed Models
series SIGRADI
email
last changed 2016/03/10 09:47

_id 4559
id 4559
authors Kilian, Axel
year 2006
title Design Exploration through Bidirectional Modeling of Constraints
source Massachusetts Institute of Technology
summary Today digital models for design exploration are not used to their full potential. The research efforts in the past decades have placed geometric design representations firmly at the center of digital design environments. In this thesis it is argued that models for design exploration that bridge different representation aid in the discovery of novel designs. Replacing commonly used analytical, uni-directional models for linking representations, with bidirectional ones, further supports design exploration. The key benefit of bidirectional models is the ability to swap the role of driver and driven in the exploration. The thesis developed around a set of design experiments that tested the integration of bidirectional computational models in domain specific designs. From the experiments three main exploration types emerged. They are: branching explorations for establishing constraints for an undefined design problem; illustrated in the design of a concept car. Circular explorations for the refinement of constraint relationships; illustrated in the design of a chair. Parallel explorations for exercising well-understood constraints; illustrated in a form finding model in architecture. A key contribution of the thesis is the novel use of constraint diagrams developed to construct design explorers for the experiments. The diagrams show the importance of translations between design representations in establishing design drivers from the set of constraints. The incomplete mapping of design features across different representations requires the redescription of the design for each translation. This redescription is a key aspect of exploration and supports design innovation. Finally, this thesis argues that the development of design specific design explorers favors a shift in software design away from monolithic, integrated software environments and towards open software platforms that support user development.
keywords Design, exploration, generative, bidirectional, constraints
series thesis:PhD
type normal paper
email
more http://designexplorer.net/newscreens/phd2006/index.html
last changed 2006/12/07 19:52

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2006_e070c
id sigradi2006_e070c
authors Cardoso, Daniel
year 2006
title Controlled Unpredictability: Constraining Stochastic Search as a Form-Finding Method for Architectural Design
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 263-267
summary Provided with a strict set of rules a computer program can perform the role of a simple designer. Taking advantage of a computer’s processing power, it can also provide an unlimited number of variations in the form while following a given set of constraints. This paper delineates a model for interrelating a rule-based system based on purely architectural considerations with non-deterministic computational procedures in order to provide controlled variations and constrained unpredictability. The experimental model consists of a verisimilar architectural problem, the design of a residential tower with a strict program of 200 units of different types in a given site. Following the interpretation of the program, a set of rules is defined by considering architectural concerns such as lighting, dimensions, circulations, etc. These rules are then encoded in a program that generates form in an unsupervised manner by means of a stochastic search algorithm. Once the program generates a design it’s evaluated, and the parameters on the constraints are adjusted in order to produce a new design. This paper presents a description of the architectural problem and of the rule building process, images and descriptions of three different towers produced, and the code for the stochastic-search algorithm used for generating the form. The succesful evolution of the experiments show how in a computation-oriented design process the interpretation of the problem and the rule setting process play a major role in the production of meaningful form, outlining the shifting role of human designers from form-makers to rule-builders in a computation-oriented design endeavour.
keywords Architectural Design; Stochastic; Random; Rule-based systems; Form-generation
series SIGRADI
email
last changed 2016/03/10 09:48

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2006_e081d
id sigradi2006_e081d
authors Hecker, Douglas
year 2006
title Dry-In House: A Mass Customized Affordable House for New Orleans
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 359-362
summary Dry-in house is a mass customized affordable housing system proposed for the reconstruction of New Orleans. The dry-in House gets the owner back to their home site quickly while providing the infrastructure an occupant needs (shelter, water, electricity). The owner is supplied with an inhabitable shell that is customizable before it is fabricated as well as onsite as the project is “fitted out” over time. The key concept is to allow families to participate in the design of their customized homes and to get people back to their home sites as quickly as possible and to give them the opportunity to finish and further customize their home over time. The project addresses inefficiencies and redundancies in emergency housing currently provided by FEMA. Primarily the dry-in House as its name implies provides a timely dried-in space which doubles as a customized infrastructure for the reconstruction of homes and neighborhoods. The project is designed to meet the $59,000 life cycle cost of the presently provided temporary housing, the notorious “FEMA Trailer”. However, the Dry-in House provides a solution that: a) Is permanent rather than temporary. The house will be finished and further customized over time rather than disposed of. b) Reoccupies the owner’s home site rather than a “FEMA ghetto” keeping the community together and functioning. c) Is mass customized rather than mass-standardized allowing the owner to have input on the design of their home. The design is a “starter home” rather than an inflexible and over-determined solution. This also has the benefit of giving variation to the reconstruction of New Orleans as opposed to the monotony of mass-production. d) Allows the owners to further customize their home over time with additional exterior finishes and the subdivision and fit out of the interior. By utilizing plate truss technology and associated parametric modeling software, highly customized trusses can be engineered and fabricated at no additional cost as compared to off-the-shelf trusses. This mass customization technology is employed to create the building section of each individual’s house. The truss is not used in its typical manner, spanning over the house; rather, it is extruded in section to form the house itself (roof, wall, and floor). Dry-in House exploits this building technology to quickly rebuild communities in a sensible manner. It allows for an increased speed of design and construction and most importantly it involves the owner in this process. The process has other benefits like reducing waste not only because it replaces the FEMA trailer which is expensive and disposable but also since the components are prefabricated there is more precision and also quality. The Dry-in House allows the owner-designer to “draw” the section of their new home providing them with a unique design and a sense of belonging and security. The design of the section of the house also provides them with spatial configurations customized relative to site conditions, program etc... Because of the narrow lot configuration of New Orleans, the design maximizes the roof as a source for natural ventilation and light for the interior of the house. In addition, the house is one room deep providing cross ventilation in all rooms minimizing reliance on artificial mechanical systems. The timely and efficient off site fabrication of building sections facilitate larger concentrations of volunteers on site at one time, thereby promoting a greater collective spirit among the community and volunteer workforce, a therapeutic event for the community as they participate in the rebuilding of their homes and city. With individualized building sections arriving on site, the construction process is imagined to be more akin to a barn raising, making possible the drying in of multiple houses in less than one day.
keywords mass customization; digital manufacturing; affordable housing
series SIGRADI
email
last changed 2016/03/10 09:53

_id 2006_114
id 2006_114
authors Hirschberg, Urs; Allen Sayegh; Martin Frühwirth and Stefan Zedlacher
year 2006
title 3D Motion Tracking in Architecture - Turning Movement into Form - Emerging Uses of a New Technology
doi https://doi.org/10.52842/conf.ecaade.2006.114
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 114-121
summary Tracking in space is an important bridge between physical and virtual environments. Optical 3D motion capture systems have become standards in the special effects industry and are increasingly common in medical applications, as well as in Virtual Reality (VR) and Augmented Reality (AR) set-ups. Beyond these applications, there are a number of emerging uses for such systems in architectural design. The possibility to track complex movements in space in real time and at high precision can open up new modes of interacting with spaces, and of generating movement as form as part of an architectural design process. What makes these possibilities particularly interesting for architectural investigations is that they don’t have to be limited to a single user, but can happen in a collaborative way, involving many users simultaneously. After briefly explaining the technical aspects of the technology, an overview of such emerging uses is discussed. As an illustration of this potential, the results of a recent workshop are presented, in which a group of architecture students explored the hidden beauty of everyday movements and turned them into sculptural objects.
keywords Motion Tracking; Animation; Design Process; Augmented Reality; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:50

_id 2006_428
id 2006_428
authors Jachna, Timothy; Yasuhiro Santo and Nicole Schadewitz
year 2006
title Deep Space
doi https://doi.org/10.52842/conf.ecaade.2006.428
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 428-435
summary An existing café and multi-functional space at the School of Design of the Hong Kong Polytechnic University has been linked to a “twin” in the form of an online-accessible environment. Using arrays of sensors, displays and other interfaces, channels of communication are established between the virtual space and the physical space, enabling on-site visitors to the café and online visitors to the project website to participate in a shared spatial experience. The project explores ways in which digital technologies can serve to enhance and enrich the experience of spatiality and human social interaction in space(s). The paper explains the design of the modes of communication between the two spaces, outlining the theory and genesis of the project and discussing the issues and principles that come into play in the design an realization of such spaces, such as the interplay between the three-dimensionality of the physical space and the two-dimensional picture-plane based monitor interface through which the website is experienced, and strategies for the transmission of spatial experience within the strictures of commonly-available hardware and software interfaces.
keywords Interactive spaces; collaborative virtual environments; twinned spaces; mixed realities; mediated social interaction
series eCAADe
email
last changed 2022/06/07 07:52

_id c7e6
id c7e6
authors Loemker, Thorsten Michael
year 2006
title Digital Tools for Sustainable Revitalization of Buildings - Finding new Utilizations through Destructive and Non-Destructive Floor Space Relocation
source Proceedings of the International Conference on Urban, Architectural and Technical Aspects of the Renewal of the Countryside IV., Bratislava, May 2006
summary In 1845 Edgar Allan Poe wrote the poem “The Raven”, an act full of poetry, love, passion, mourning, melancholia and death. In his essay “The Theory of Composition” which was published in 1846 Poe proved that the poem is based on an accurate mathematical description. Not only in literature are structures present that are based on mathematics. In the work of famous musicians, artists or architects like Bach, Escher or Palladio it is evident that the beauty and clarity of their work as well as its traceability has often been reached through the use of intrinsic mathematic coherences. If suchlike structures could be described within architecture, their mathematical abstraction could supplement “The Theory of Composition” of a building. This research focuses on an approach to describe layout principles of existing buildings in the form of mathematical rules. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a design problem, two exemplary methods will be described to apply new utilizations to existing buildings through the use of these rules.
series other
type normal paper
email
last changed 2008/10/13 14:06

_id acadia06_064
id acadia06_064
authors Luhan, Gregory A.
year 2006
title Synthetic Making
doi https://doi.org/10.52842/conf.acadia.2006.064
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 64-67
summary Various approaches of virtual and physical modeling have led to a synthetic form of making that is plastic and scalable in nature. This shift from traditional forms of representing and generating architecture now offers a better possibility of full-scale construction and fabrication processes and links transparently to industry. Architects are beginning to dynamically inform the visioning processes of assemblies and design through a range of precise subassemblies. Further to this end, the synthetic techniques and materials are opening up avenues for designers to investigate a range of fibers and fabrics that radically transform light and color renditions, and texture. Investigations in the realm of traditional materials such as stone, wood, and concrete continue to evolve, as do their associated methods of making. As a result of synthetic technologies, architects today have the possibility to work along side industry engineers and professionals to design castings, moldings, patterns, and tools that challenge not only the architectural work of art, but industrial and product design as well. This cultural shift from physical space to virtual space back to physical space and the combination of hand-, digital-, and robotic-making offers a unique juxtaposition of the built artifact to its manufacturing that challenges both spatial conventions and also the levels of precision and tolerance by which buildings are assembled. Traditional forms of documentation for example result typically in discrepancies between the drawn and the actualized which are now challenged by the level of precision and tolerance at the virtual level. It is within this context that leading-edge architects and designers operate today. Yet, how the profession and the academy respond to these opportunities remains an open line of inquiry and addressing these concerns opens up the rich potential enabled through synthetic making.
series ACADIA
email
last changed 2022/06/07 07:59

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2006_p019a
id sigradi2006_p019a
authors Ribeiro, Clarissa and Pratschke, Anja
year 2006
title Arquitetura Irreversível_ Tempo e Complexidade [Irreversible Architecture_ Time and Complexity]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 90-94
summary This paper aims at discussing how computational environments could give support to complex approaches of architectural design process. Focusing on generative design, the main goal is to allow the perception of architecture more as system than as object: form, structure and organization as emergences in non-linear, autoorganizational processes. It involves the interaction of a vast universe of factors and flows that performs as attractors or repellers for the architecture-systems evolution in time. The ideas presented here are results of the Master Research in Architecture and Complex Thought of Clarissa Ribeiro, and are part of a larger questioning about the relation of architectural design process and digital culture, discussed in our research group Nomads.USP [Center for Interactive Living Studies, http://www.eesc. usp. br/nomads].
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia06_536
id acadia06_536
authors Sprecher, A., Ahrens, C., Neuman, E.
year 2006
title The Hylomorphic Project
doi https://doi.org/10.52842/conf.acadia.2006.536
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 536-537
summary The Hylomorphic Project is a complex canopy structure, genetically evolved as a vital entity that reacts to changing data streams while configuring the architectural form. For the Hylomorphic Project, Open Source Architecture (OSA) together with structural engineer Prof. Kristina Shea and Marina Gourtovaia of Cambridge University (UK) developed genetic algorithms. Performs in eifForm software, an experimental computer-aided design system for structural synthesis, the algorithm is based in computational environments as a methodology for form finding and material expression that goes beyond the formal articulation of the computational procedure. This procedure simulates a topological condition of natural form evolution that can be consolidated according to innumerable trajectories. Seeking dynamic, flexible and continuous evolution procedures, the software provides the required conditions for this type of the design as it consists of a computational core, which is written in C, a fast low-level compiled language. The modules providing interactive access to the core and the graphical user interface (GUI), a high-level scripting language written in Python, allow for easy customization of the software according to a design task in hand.
series ACADIA
email
last changed 2022/06/07 07:56

_id eaea2005_89
id eaea2005_89
authors Urland, Andrea
year 2006
title The Impact of Colour on Urban Space Quality
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 89-100
summary This paper examines selected aspects of the complex relationship between colour and built environment. Urban space, and the impact of applied colour schemes on the perceived quality of the urban space form core of interest. By studying the exterior colour schemes of existing built environments, it aims at making the attempt to bring more knowledge to urban design by pointing out the conditioning factors of the perceived quality of urban spaces through colour-related indicators. Understanding the conditioning factors of emotional impacts and responses is seen as a potential for improvement through conscious modifications of colour schemes. Such knowledge is essential also for any simulation if it is to be meaningful for studying or visualizing urban spaces. The paper offers first results of on-going mainly experimental research focused on professional colour communication and specification, colour preferences, social attitudes and responses to urban spaces in existing environments. The analyses aim at expanding the knowledge and thus possibilities and tools allowing positive influence on urban spaces and broader townscapes in the process of transformation of historic and more recent urban areas under current development pressures.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id sigradi2006_e160c
id sigradi2006_e160c
authors Andrade, Max and Cheng, Liang-Yee
year 2006
title Diretrizez Geométricas de Auxílio ao Processo de Projeto de Edifícios Residenciais [Geometrical Guidelines to Aid the Design of Floor Plants of Residential Buildings]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 243-247
summary This paper discusses the basic principles of a geometric method to aid the design process of residential buildings. It makes part of the initial phases of a research whose aim is to develop a computer system to aid the sketching and evaluation of floor plant design of multi-storied residential buildings. The fundamental idea of the research is the existence of some basic patterns of floor plants that reflect the designer’s mental models in this category of building. The models are regarding the usage of the space such as forms and dimensions, the elements for the circulation and the external skins. During the design process, architects work on each one of these models to generate the sketches of the floor plant layout. Generally, the layout of an apartment in multi-storied buildings depends basically on the internal dynamics of the users without the complex relationship with the neighborhood environment as in the case of houses. In this way, it would be easier to identify, to organize and to associate the mental models of multi-storied buildings on geometric basis, which, in their turns, might be effectively used as inputs for the layout planning of new design. By applying the geometric basis, the architects may reduce the universe of feasible alternatives into a small group of heuristic solutions that can be described by using few simple guidelines. In addition to this, the geometric bases of the existing buildings might be used to build a knowledge-based system to aid the architectural design. The objective of this paper is to show some initial results of the research obtained from a survey and the case studies of form, dimensions and topology of existing buildings. To limit the scope of the discussion, only residential buildings with two to three bedrooms are considered. At first, a survey of plants of residential buildings with two and three bedrooms, in Brazil, is carried out. In the next step, the dimensions, shape, external skin perimeter, circulation system and accessibility are analyzed. Finally, typical topologies of the building are investigated.
keywords Design process; geometric method; residential buildings
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia06_158
id acadia06_158
authors Barrow, Larry R.
year 2006
title Digital Design and Making 30 Years After
doi https://doi.org/10.52842/conf.acadia.2006.158
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 158-177
summary Current design studio pedagogy is undergoing significant change as the means and methods of ideation, representation and making evolve with digital tools; Computer-Aided-Design-Computer-Aided-Manufacturing (CADCAM) remains a contentious topic among many studio instructors and faculty in the academy. Computing is now nearing ubiquity; many processes and products have seen significant evolutionary trends, if not revolutionary transformations; this is no less the case in the academic and firm design studio. The impact of “digital” media and CADCAM, in the design-make process, remains obscure and formally unknown.In this paper, we will review our research and findings from the work of three students; two current students who were in our Digital Design II (DDII) spring 2006 course and the third student, the writer, will reflect on “design and making” from a “pre-architecture” and pre-studio/pre-computer (CADCAM) perspective of ‘making’ thirty-three years ago. The research findings provide universal precepts pertinent to current thinking about emerging studio pedagogy. Our findings suggest that computing technology should be introduced at the outset of design education for the beginning student in basic design studio; and moreover, advanced designers can partner with “digital” tools to ideate and realize their, heretofore unrepresentable and unconstructable, ideas in the early stages of design using CADCAM.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e048c
id sigradi2006_e048c
authors Beck, Mateus Paulo; Brener, Rafael; Giustina, Marcelo and Turkienicz, Benamy
year 2006
title Light and Form in Design – A Computational Approach
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 254-257
summary Shape perception is strongly influenced by the reciprocal relation between light and form. Computational applications can increase the number of design alternatives taking into account possible variations in the relation between light and form. The aim of this study is to discuss a pedagogical experience carried out with 5th semester architectural students, based on a series of exercises prior to the term project. The exercises were concerned with the relation between light and form from an aesthetical point of view and should be understood as examples for the use of computers as tools to creatively accelerate the process of design and learning. The paper is divided in five parts. The first one describes the conceptual background for the exercises, a descriptive method for the identification of light effects in architectural objects based on ideas of shape emergence. The exercises’ methodology is explained in the second part, referring to the use of computational applications in 3-dimensional modeling, material and light simulation. The methodology includes different phases: –creation of bi-dimensional compositions according to symmetry operations; –creation of a minimal living space assigning functions to spaces originated from the former composition; –analysis of the impact of light on the form and spaces created; –alteration of form and materials creating new light effects considering the functions related to the spaces. The exercises alternate work in computational environment in two and three dimensions with the use of mockups, lamps and photography. In the third part the results –student’s design steps– are described. In the fourth part the results are analyzed and some conclusions are outlined in the fifth and last part. The use of emergent forms combined with computational tools has proved to be an effective way to achieve an accelerated understanding of the impact of light on forms as demonstrated by the evolution of the students work during the term and by their final results concerning the term project.
keywords Architectural Design; Lighting; Design Simulation; Virtual Environment
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2006_601
id caadria2006_601
authors BINSU CHIANG, MAO-LIN CHIU
year 2006
title PRIVATE/UN-PRIVATE SPACE: Scenario-based Digital Design for Enhancing User Awareness
doi https://doi.org/10.52842/conf.caadria.2006.x.s8b
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 601-603
summary Context awareness is important for human senses of places as well as human computer interaction. The aim of this research paper is focusing on controlling the user's privacy in a smart space which is adaptive to different users for enhancing the user's awareness in his diary life. In Environmental Psychology, the definition of privacy is that an individual has the control of deciding what information of himself is released to others, and under how he interact with others. (Westin 1970) And privacy is categorized as the linguistic privacy and visual privacy. (Sundstorm 1986). Solutions for privacy control: Plan Layout, Vision Boundary, Access Control and Architecture Metaphor - the transmission of information is not ascertainable for every single user. Although information are shown in public, but information is implied by cues and symbols. Only a certain user or a group of users have access to the full context of information. The methodology is to form an analytic framework to study the relationship between information, user and activities by using the computational supports derived from KitchenSense, ConceptNet, Python, 3d Studio Max and Flash; and to record patterns built up by users' behaviour and actions. Furthermore, the scenario-based simulation can envision the real world conditions by adding interfaces for enhancing user awareness.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_656
id 2006_656
authors Breen, Jack and Martijn Stellingwerff
year 2006
title De-coding the Vernacular - Dynamic Representation Approaches to Case-based Compositional Study
doi https://doi.org/10.52842/conf.ecaade.2006.656
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 656-663
summary Representational approaches have always played an important role in the design-driven development of built environments, the analytical study of architectural compositions and their effects. With the introduction – and successive steady development – of computer-based platforms of visualization, the professional and intellectual palette of designers, as well as researchers, have expanded considerably. Nonetheless, in recent years the opportunities for systematic scrutiny and understanding of the expressive qualities of design proposals and artefacts have all too frequently been overshadowed by high-flying conceptual developments and seductive representation modes. It is time that the objective description and unravelling of architectural compositions – so to speak the discipline of Ekphrasis in design practice, education and research – is once again given more prominence in architectural discourse and debate. The central idea behind this contribution is that, by linking instruments of design with the methods of formal composition and decomposition, renewed opportunities for representation-driven study in a scholarly context, focusing upon elusive compositional attributes and their workings, may be given a new impulse. The project that is presented here concerns a case-based explorative study into the domains of aesthetic convention and invention, making use of a variety of virtual and physical representation techniques. These include digital as well as tangible modelling and sketching approaches (separately and in combination), in conjunction with computer-based image manipulation techniques, making use of systematic data identification and denotation. The opportunities, merits and shortcomings of the computer-based and physical visualization approaches, which were applied and tested, are discussed on the basis of results and findings from the ongoing AA Variations project.
keywords Design representation; Computer-based sketching; Virtual and physical modelling; Compositional variation; Contemporary aesthetics
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_997426 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002