CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 602

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
doi https://doi.org/10.52842/conf.acadia.2006.232
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2011_p003
id cf2011_p003
authors Ng, Edward; Ren Chao
year 2011
title Sustainable Planning with a Synergetic Collation of Thermal and Dynamic Characteristics of Urban Climate using Map Based Computational Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 367-382.
summary Since 2006, half of the world’s population lives in cities. In the age of climate change, designing for quality environmental living conditions and sustainability is a topical concern. However, on the one hand, designers and city planners operate with their three dimensional city morphological data such as building shapes and volumes, forms and their spacings, and functional attributes and definition signatures. On the other hand, urban climatologists operate with their numbers and equations, quantities and signals, and normals and anomalies. Traditionally the two camps do not meet. It is a challenge to develop design tools that they can work together. Map based information system based on computational geographic information system (GIS) that is properly structured and represented offers a common language, so to speak, for the two professional groups to work together. Urban climatic map is a spatial and graphical tool with information embedded in defined layers that are collated so that planners and urban climatologists can dialogue over design issues. With various planning and meteorological data coded in defined grid resolutions onto the GIS map system, data can be synergized and collated for various understandings. This papers explains the formulation of Hong Kong’s GIS based Urban Climatic Map as an example of how the map works in practice. Using the map, zonal and district based planning decisions can be made by planners and urban climatologists that lead to new designs and policy changes.
keywords sustainable development, urban planning, urban thermal, urban dynamics, computer tools
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2012_036
id caadria2012_036
authors Kaushik, Vignesh Srinivas and Patrick Janssen
year 2012
title Multi-criteria evolutionary optimisation of building enveloped during conceptual stages of design
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 497–506
doi https://doi.org/10.52842/conf.caadria.2012.497
summary This paper focuses on using evolutionary algorithms during conceptual stages of design process for multi-criteria optimisation of building envelopes. An experiment is carried out in optimising a panelled building envelope. The design scenario for the experiment is based on the scenario described in Shea et al. (2006) for the building envelope of the Media Centre Building in Paris. However, in their research, the optimisation process only allowed panel configuration to be optimised. In this paper, the task is to approach the optimisation of the envelope of the same building, assuming it to be in the early phases of the design process. The space of possible solutions is therefore assumed to be much wider, and as a result both external building form and internal layout of functional activities are allowed to vary. The performance intent of the experiment remains the same as that of Shea et al. (2006), which was to maximise daylight and minimise afternoon direct sun hours in the building at certain specific locations.
keywords Multi-criteria optimisation; building envelopes; conceptual stages of design evolutionary algorithms; parametric design
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2006_269
id caadria2006_269
authors MATTHIAS HAASE, ALEX AMATO
year 2006
title ND MODELLING FOR SUSTAINABLE ENVELOPES: The sustainable dimensions of envelope design
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 269-276
doi https://doi.org/10.52842/conf.caadria.2006.x.e6l
summary Sustainable development issues are currently the driving forces in many building projects. The building envelope is critical for the architectural expression as well as large parts of the environmental performance. This study tries to investigate the advantages of multidimensional computer aided modeling and simulation for a sustainable facade design approach. A first step towards nD modeling for sustainable design is to establish a list of parameter which are used as design criteria: Environmental performance, thermal visual and acoustic comfort. Computer simulation and analysis of different building elements can help to determine the performance according to a set of design parameter. Environmental impacts due to energy consumption are an important parameter but it is believed that comfort criteria need also to be accounted for.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2006_e151c
id sigradi2006_e151c
authors Neumann, Oliver and Schmidt, Daniel
year 2006
title CNC Timber Framing – Innovative Applications of Digital Wood Fabrication Technology
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 304-307
summary The discourse on depleting natural resources and compromised environments have led to extended research on sustainable designs methods, building practices and materials. Beyond the actual performance of building products and components, research on sustainable building increasingly focuses on the long-term effects of the production, application and life cycle of building materials on the natural environment, human inhabitation and quality of life. Computer aided manufacturing technologies play a significant role not only in the transformation of design and building methods, but also in an extended discourse on cultural development. Globally available technologies connect the design and building process to a broad range of long-term ecological factors by creating a correlation between "the emergent political, economical and social processes and … architectural techniques, geometries and organization." Through this interrelationship to economy and culture, technology and its applications are also directly related to notions of place and territory as well as to fundamental ideas of ecology. The collaborative research and design study for an outdoor theater roof structure at the University of British Columbia Malcolm Knapp Research Forest at Maple Ridge, B.C., Canada, focuses on the use of digital media in prefabrication and material optimization. By utilizing small square section timber and minimizing the use of alienating connectors the research on the wood roof structure illustrates the potential of a design culture that seeks innovation in a broader understanding of ecology routed in regional culture, environmental conditions, economy and tradition. Labor intensive manufacturing techniques are redefined aided by computer controlled machines and virtual modeling of complex geometries is translated into simple operations. The result is a more sensible and accurate response to the place’s demands. In order to generate innovative design interventions that make a constructive long-term contribution to the preservation, maintenance and evolution of the environment, design needs to be based on a comprehensive understanding of its context and the distinctive qualities of the materials used. Following the example of the outdoor roof structure, this paper aims to define innovative design as work that resonates at the intersection of the fields of technology, material science, manufacturing processes, techniques of assembly and context that constitute the expanded context or complex ecology that projects need to engage. It is in design research studies like for the outdoor theater roof structure with focus on CNC wood fabrication technologies that the common design and building discourse is put to question, boundaries are explored and expanded and the collective understanding is improved towards ecological design.
keywords CNC Wood Fabrication; Design Innovation; Ecology
series SIGRADI
email
last changed 2016/03/10 09:56

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac20064408
id ijac20064408
authors Ataman, Osman; Rogers, John; Ilesanmi, Adesida
year 2006
title Redefining the Wall: Architecture, Materials and Macroelectronics
source International Journal of Architectural Computing vol. 4 - no. 4, pp. 125-136
summary As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of a new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology of its own.
series journal
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000004/art00009
last changed 2007/03/04 07:08

_id ddss2006-hb-203
id DDSS2006-HB-203
authors Gerhard Zimmermann
year 2006
title Multi-Agent Model to Multi-Process Transformation - A housing market case study
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 203-219
summary Simulation is a means to help urban planners and investors to optimize inhabitant satisfaction and return on investment. An example is the optimal match between household preferences and property profiles. The problem is that not enough knowledge exists yet about dynamic user activity models to build reliable and realistic simulators. Therefore, we propose a modeling and software technique that produces simulator prototypes very efficiently for the development, test, and evaluation of many different user activity models, using executable models, code generation, and a domain specific software process. As a specific feature, the model is based on many agents acting independently from each other and that are mapped in several refinement steps into the same number of concurrent processes. The housing example is used as a case study to explain the process and show performance results.
keywords Agent technology, User activity modeling, User activity simulation, Software engineering, Code generation, Software process
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e185d
id sigradi2006_e185d
authors Geva, Anat and Mukherji, Anuradha
year 2006
title The Holy Darkness: A Study of Light in Brihadeshvara Hindu Temple, in Tanjore, Tamilnadu, India (1010 AD)
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 425-428
summary The study investigates how religious principles govern the treatment of light/darkness in sacred monument. Specifically, a digitized daylight simulation is used in the analysis of Brihadeshvara Hindu Temple, built in 1010 AD in Tanjore, Tamilnadu, India. This sacred monument, listed as one of UNESCO's World Heritage Sites, is an intriguing case study since the treatment of the 'holy light' in the temple is the treatment of the 'holy darkness'.In spite of the importance given to sun in ancient Hindu scriptures, natural light was used very sparsely in Hindu temples. According to Hindu religious belief, when a worshipper is in the presence of the divine, there should be nothing to distract his/her senses (including vision). Therefore, the innermost sanctum is shrouded in total darkness and the progression into the temple is a ritual movement where the devotee goes through the dynamic experience of the darkening spaces of the temple before reaching the dark sacred chamber (see Fig.1). The dictation of the Hindu faith to create this spiritual procession toward the 'holy darkness' is examined in the historic Brihadeshvara Temple by using Lightscape -- computerized lighting simulation software. To run the program, a 3-D CAD surface model of the temple was created and imported into Lightscape. Then the model was assigned materials and its openings and lighting systems were defined. The simulations were run on four interior horizontal (floor) and vertical (walls) surfaces, along four spaces of the procession in the temple. The simulation targeted three time frames: sunrise, sunset and at high noon on March 21st (the equinox). The location of Tanjore, India was used for light conditions. The Lightscape simulations used the process of radiosity to generate single frame daylight renderings along with light analysis of each surface. A lighting animation was then produced in Quick Time.The results of this analysis demonstrate that the average illumination values for specific surfaces of the temple along the procession sequence correspond to the schematic expectation depicted in Figure 1, i.e., a progressively decreased luminance towards the dark innermost chamber. Furthermore, the simulated values were compared to the Illuminating Engineering Society (IES) standards, which recommend ranges of luminance for specific visual tasks and areas. The comparisons showed that the average luminance in the temple, from the illuminated entrance in the east to the darker chamber in the west, is lower than the IES standards for 'public places with dark surroundings' for 'short temporary visits'. Finally, a morphological analysis of the temple along accepted daylight design guidelines corroborated the previous findings. The multi-method investigation of the relationship of light and darkness, light and objects, and the designated light quality in the Brihadeshvara Temple demonstrates the strong influence of the specific dictum of Hinduism on the light/darkness treatment in the temple. The paper concludes that digitized media such as computerized daylight simulations can examine the significance of light/darkness in sacred monuments as a spiritual experience. This quantitative investigation can augment the qualitative studies in the field of historic sacred architecture.
series SIGRADI
email
last changed 2016/03/10 09:52

_id 32b4
id 32b4
authors Heylighen, Ann; Casaer, Mathias; Neuckermans, Herman
year 2006
title UNAWARE: SUPPORTING TACIT DESIGN KNOWLEDGE EXCHANGE
source International Journal of Web-Based Communities, Volume 2, Number 1, Jan 2006, pp.31-44
summary DYNAMO (Dynamic Architectural Memory Online) is an interactive platform to share ideas, knowledge and insights in the form of concrete building projects among designers in different contexts and at different levels of expertise. Interaction with various user groups revealed two major thresholds: submitting project material to the platform takes time, effort, and specific skills; in addition, designers tend to sense a psychological threshold to share their ideas and insights with others. In response to this ‘free-ridership’, the paper proposes to conceive DYNAMO as an associative network of projects, and develops ideas about how the links in this network can be determined and updated by exploiting insights implicitly available in project documentation and user (inter)actions. This should allow DYNAMO to learn from the insights of all designers using the platform, active contributors and ‘free-riders’ alike, without any awareness on their side and to apply these insights to continuously enhance its performance.
keywords architectural design; self-organisation; usage logs; connectionism
series other
type normal paper
email
last changed 2006/02/01 14:28

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
doi https://doi.org/10.52842/conf.acadia.2007.284
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id bsct_tsiopoulou
id bsct_tsiopoulou
authors Tsiopoulou, Chamaidi
year 2006
title Calibrated Sky Luminance Maps for Daylight Simulation
source Vienna University of Technology; Building Science & Technology
summary Building design and control applications can benefit from daylight simulation. Sky models help to model the sky conditions and predict the availability of daylight in indoor environments. Sky luminance is changing according to the weather, the season of the year and the time of the day, therefore it is difficult to create an accurate sky model. The simplified models that are currently used for computational simulation do not take into account these constant changes. It is important to test if there is the possibility of creating a sky model that approaches the characteristics of real sky and provides the architects with more precise daylight predictions. As past research has demonstrated, relatively low-cost sky luminance mapping via digital imaging can provide an alternative to highly sophisticated sky scanners and support the provision of information on sky luminance distribution patterns on a more pervasive basis. The aim of this research is first to explore the potential of deriving sky luminance distribution maps based on digital imaging and then to test their efficiency for the prediction of indoor daylight. A comparison is made between the predictions based on existing sky models (CIE Standard Skies and Perez All-weather sky) and the camera-based sky model. Thus, the effects of the selection of the sky model on indoor daylighting prediction are explored. A set of measurements were performed at the roof of the TU Vienna in order to obtain the necessary data. The horizontal illuminance levels due to 12 sky sectors were measured with the help of a sky monitoring device. A scale (1:5) model of an architectural space was used to measure the indoor illuminance values with the help of three sensors. At the same time, images of the sky were obtained with the help of a digital camera with a fish-eye converter. Luminance values were derived from the images and four calibration methods were used to generate accurate sky luminance distribution maps. These variously calibrated luminance values were then compared with the corresponding photometric measurements. Finally, the application of a digitally derived sky model based on the best calibration method was compared with the other two sky models toward the prediction of indoor illuminance levels using the case of the scale model. The results demonstrated that the camera-based sky model was more reliable than the other two sky models. It was concluded that digital imaging combined with parallel photometric calibration can provide a valuable means for a real-time generation of sky luminance maps. Detailed sky luminance models can be generated and their application can increase the predictive accuracy of the computational daylight prediction tools. Moreover, the reliability of daylight simulation can be increased toward supporting the design process and the operation of daylighting systems in buildings.
keywords Daylight simulation; sky luminance mapping; digital imaging; sky models.
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:33

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
doi https://doi.org/10.52842/conf.acadia.2006.230
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_104
id acadia06_104
authors Barrow, Larry R.
year 2006
title Performance House: A CADCAM Modular House System
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 104-121
doi https://doi.org/10.52842/conf.acadia.2006.104
summary Millions of persons around the globe live in low quality indigenous, or Manufactured Housing (MH) systems that often result in low “performance” undesirable living environments and, at times, life threatening habitation. Our research has explored mass production principles in product design and architecture, currently at the single family housing scale, with a focus on the recent devastation along the US Gulf Coast as a result of hurricane impact, most notably hurricane Katrina.“Modern architecture” theoreticians have conceived, written, prototyped and even launched business ventures in an attempt to bring their manufactured housing “ideas” to fruition. However, architects have generally had little “long-term” impact in the area of manufactured housing strategies and the current manufactured housing industry remains archaic and problematic. This paper includes our research of other architects attempts to leverage technology in the manufactured housing industry; additionally, we analyzed current problems in the US mass housing industry. We then derived a set of “design criterion” as a means of anchoring our design inquiry for a proposed factory-built modular house system.Our research encompasses both process and product innovation; this paper reflects on our use of technology to leverage an Industrial Design (ID) process that is inclusive of many “design” partners and team members. We are using both virtual and physical output representation and physical prototyping for a factory-built house system; our Research and Development (R&D) is on-going with our collaborating design-manufacture engineering partners from the automotive, furniture and aerospace research labs here at Mississippi State University. Our goal is to use “industrial design” principles to produce mass housing components that provide durable-sustainable housing.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_868
id 2006_868
authors Becker, Mirco
year 2006
title Branches and Bifurcations - Building a framework for modeling with isosurfaces in Generative Components
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 868-873
doi https://doi.org/10.52842/conf.ecaade.2006.868
summary An isosurface is a three-dimensional representation of a constant value of a field function within a given volume. They are normally used in computer graphics to visualize data in fluid dynamics, medical imaging, geophysics, and meteorology. The advantage of isosurfaces is that they can represent all sorts of topologies. That makes them a perfect tool for modeling, branching, forking, and bifurcating objects with smooth transitions. As they work of a field function, the surface is implicit, the polygonization an approximation. This is a good base for coupling performance with precision. The task was to define a set of handles to change and model an isosurface. It had to happen through the modeling of the field function in a way that is rather intuitive but without giving up the precision one is used to have from standard NURBS/BREP modeling. The paper shows how a modeling framework for isosurfaces is implemented as a plug-in for Bentley Systems Generative Components allowing an intuitive way of exploring design variations. The implementation is illustrated with a proof of concept showing a sketch design.
keywords Isosurface; Polygonization; Scalar field; Marching Cube; Generative Components
series eCAADe
email
last changed 2022/06/07 07:54

_id 2006_684
id 2006_684
authors De Bodt, Kathleen
year 2006
title SoundScapes & Architectural Spaces - Spatial sound research in digital architectural design
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 684-689
doi https://doi.org/10.52842/conf.ecaade.2006.684
summary The paper presents ongoing research focusing on the development of digital tools and methodologies for spatial design based on non-Euclidean geometries. It addresses the way sound can be used both conceptually and acoustically in the early stages of the design process, examining digital architectural design and modeling based on three-dimensional sound visualization and the acoustical analysis and evaluation of complex curved surface geometry. The paper describes SoundMatrix, the first part of a digital design tool created by using Max/Msp/Jitter, to assist in the preliminary design of building façades in small-scale urban environments, specifically studying the possibilities of curvature to decrease sound reflection between opposing street façades. Examples from a workshop with the SoundMatrix application illustrate the real-time 3D authoring and sound spatialisation processing currently implemented in the tool.
keywords graphical programming; performance-based design; generative design
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia06_251
id acadia06_251
authors d’Estrée Sterk, Tristan
year 2006
title Shape Change in Responsive Architectural Structures: Current Reasons & Challenge
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 251-260
doi https://doi.org/10.52842/conf.acadia.2006.251
summary Shape control within architectural structures is a natural extension to the practice of engineering and architectural design. The knowledge needed for it’s development builds upon two well understood foundations: 1) the long existing knowledge that building performance and function are intimately connected to the shape of built spaces; and 2) the relatively new idea that embedded computational systems may be employed to control devices in useful and beautiful ways. When combined, each type of knowledge can be used to further architecture and engineering at both theoretical and methodological levels. Structural shape control is of major interest within architecture because it is the primary ingredient needed to produce building envelopes that change shape. Structural shape control also currently represents a major technological and methodological stumbling block for architects, posing many challenges that have theoretical and practical origins. Theoretically, responsive architectural structures demand a re-evaluation of existing notions of space making. Practically, these systems demand a re-evaluation of construction and design methodologies across both engineering and architectural practice.
series ACADIA
type normal paper
email
more admin
last changed 2022/06/07 07:55

_id sigradi2006_c158a
id sigradi2006_c158a
authors Galán, María Beatriz; Andrés Maidana Legal; Pedro Senar; Marta Neuman and Lidia Orsi
year 2006
title Diseño para el desarrollo: un enfoque en expansión [Design for the development: A growing point of view]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 61-65
summary This approach intends to develop a consulting capacity in design and technological management for the sustainable growth, supporting local communities with specific resources. In the development of the technological knowledge transfer, the acritical applications, under the cover of paradigms of technological globalization that give their back to the local contexts, and of the irrelevant pedagogical routines, dissociate the technology from its social meaning. In our research approach, the transfer experience is the unit of analysis which under observation relocates and redefines technique in the context of sustainable local development, uncovering its relations with society. In this work, we will show one experience that explain the contribution of design to sustainable development, experiences that specially reveal the need to count with criteria and indicators of technological performance in participative and inclusive scenarios.
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia06_518
id acadia06_518
authors Hasegawa, Toru
year 2006
title The hexEnvelope system: a cross-platform embedding of material and software logic into descriptive geometry
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 518-529
doi https://doi.org/10.52842/conf.acadia.2006.518
summary This paper follows the technical problematic of the hexEnvelope, a novel system for building complex geometric objects. Operating as a scripted system of parametric operations, and running through multiple 2D, 3D, and fabrication software packages, the hexEnvelope system allows for a highly tectonic assemblage of cellular units. Specific issues addressed within the system include the realization of curved surfaces through flat material, the embedding of fabrication logic and material performance within descriptive geometry, and multiple scales of deployment in terms of their tectonic and material consequence.
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia06_079
id acadia06_079
authors Kumar, Shilpi
year 2006
title Architecture and Industrial Design A Convergent Process for Design
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 79-94
doi https://doi.org/10.52842/conf.acadia.2006.079
summary The use of technology has grown with the way design professions have evolved over time. Changing needs, desires of comfort, and perceptions of the consumers have led to a distinct improvement in the design of both product and architecture. The use of the digital media and emerging technologies has brought a dramatic change to the design process allowing us to view, feel, and mould a virtual object at every stage of design, development, and engineering. Change is often quick and easy since a virtual product does not inherently carry the biases of its physical counterpart. In order to communicate ideas across the team, digital processes are also used to bring together opinions, experiences, and perspectives. These methods encourage decision making based on information rather than prejudice or instinct. Thus, digital exchanges (technology) impact firm strategies at three levels: product, process, and administrative or support activities (Adler 1989).Digital tools for design exchange in Industrial Design (ID) began much earlier than many other professions. The profession of Architecture is also slowly moving to a similar model with digital exchange finding increasing prevalence in drawing, modeling, performance simulation, design collaboration, construction management, and building fabrication. The biggest problem is the disintegrated use of technology in the architectural profession without a strategy toward streamlining the design process from conception to fabrication. In this paper we investigate how the use of technology has evolved in the professions of Industrial Design and Architecture comparatively in their product, process, and support activities. Further, we will present a set of guidelines that will help architects in the convergence of design process, helping in a more efficient work flow with a strategic use of digital technology.
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_730189 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002