CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id 2006_198
id 2006_198
authors Oxman, Rivka
year 2006
title Educating the Digital Design Thinker - What Do We Teach When We Teach Design
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 198-205
doi https://doi.org/10.52842/conf.ecaade.2006.198
summary Designerly ways of thinking have become a significant topic in design research. If indeed, contemporary phenomena of “digital design thinking” are different from traditional models, than there is emerging pressure to pioneer new teaching paradigms Theories and methods of digital design can no longer be conceptualized as the merging of computational tools with conventional formulations of design thinking. Within the framework of this orientation to a critical formulation of new educational agenda, pedagogical issues are considered. A new orientation to understanding the impact of digital media on “digital design thinking” and pedagogy is presented discussed and demonstrated
keywords Digital Design; Digital Architecture; Digital Design Studio; Design Thinking; Design Pedagogy
series eCAADe
email
last changed 2022/06/07 08:00

_id 2006_262
id 2006_262
authors Ibrahim, Magdy
year 2006
title To BIM or not to BIM, This is NOT the Question - How to Implement BIM Solutions in Large Design Firm Environments
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 262-267
doi https://doi.org/10.52842/conf.ecaade.2006.262
summary Building information modeling is the technology that is converting the workplace in design firms. The initial resistance to applying the concept has faded due to many reasons. Professional architects now see the feasibility and benefits of using the new technology. CAD managers in design firms are working toward the implementation of BIM packages in order to eventually, replace the conventional CAD platforms that are still widely used. However, there are still internal obstacles that slow down the process of the implementation. The change in the project management and the required proper training for the conversion are the two major internal obstacles. The current well organized work flow tailored around the conventional CAD platforms has to be changed in a way suitable for the new technology. The training firms provide for their employees should also be re-structured in a more vertical organization in order to guarantee that everyone understands the new concept and the new work flow. Architectural education usually reflects the needs of the work market. It is very important to understand the needs and identify the directions where the architectural education should go. What do we expect from newly graduated architects? How should we shift the focus toward BIM based CAD in design schools? And, what does it mean to teach modeling versus teaching drafting?
keywords Computer Aided Drafting; Building Information Modeling; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:50

_id 2006_532
id 2006_532
authors Abdelhameed, Wael
year 2006
title How Does the Digital Environment Change What Architects Do in the Initial Phases of the Design Process?
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 532-539
doi https://doi.org/10.52842/conf.ecaade.2006.532
summary Some researchers have tried to answer the question: do we need to think differently while designing in terms of the digital environment? This methodological question leads to another question: what is the range of this difference, if there is one? This research investigates the range of changes in how architects conduct and develop the initial design within the digital environment. The role offered by the digital environment in visual design thinking during conceptual designing through shaping: concepts, forms, and design methods, is identified and explored.
keywords Conceptual designing; architects; digital environment; design process; visual design thinking
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2006_e165b
id sigradi2006_e165b
authors Angulo, Antonieta
year 2006
title Optimization in the Balance between the Production Effort of E-learning Tutorials and their related Learning Outcome
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 122-126
summary This paper provides evidence on the level of media richness that may be cost effective in the development of e-learning tutorials for teaching and learning computer visualization techniques. For such a purpose the author provides an analysis of low-cost / high-impact media rich products, the effort and cost required in their development and the measurement of related learning outcomes. Circa twenty years of R&D of multimedia and hypermedia applications for instruction have demonstrated the benefits of communicating relevant information to learners using engaging media. Based on this evidence, this paper assumes that due to the cognitive style of design students, the instructional packages for learning computer techniques for design visualization that are rich in media content, tend to be more effective. Available visualization technologies make the development of e-learning tutorials feasible and apparently the logical way to implement our instructional packages. However the question in the development of e-learning tutorials becomes a more strategic one when we are called to reach a level of optimization between producing a package with a basic standard, namely; text & still-graphic based tutorials, or a state-of-the-art package that is based on video demonstrations (more than enough?) that can accommodate the students’ learning requirements and also our production costs. The costs include the human resources (instructor, producers, assistants and others) and the material resources (hardware and software, copies, and others) involved in the creation of the e-learning tutorials. The key question is: What is good enough, and what is clearly superfluous? In order to confirm our hypothesis and propose a relevant balance between media richness and learning effectiveness, this paper describes an experiment in the use of two different levels of media richness as used to deliver instructions on the production of computer animations for design visualization. The students recruited for this experiment were fairly familiarized with the use of 3D modeling concepts and software, but had no previous knowledge of the techniques included in the tutorials; in specific; camera animation procedures. The students, separated in two groups, used one of the two methods; then they proceeded to apply their newly acquired skills in the production of an animation without using the help of any external means. The assessment of results was based on the quality of the final product and the students’ performance in the recall of the production procedures. Finally an interview with the students was conducted on their perception of what was accomplished from a metacognitive point of view. The results were processed in order to establish comparisons between the different levels of achievement and the students’ metacognitive assessment of learning. These results have helped us to create a clear set of recommendations for the production of e-learning tutorials and their conditions for implementation. The most beneficial characteristics of the two tested methods in relation to type of information, choice of media, method of information delivery, flexibility of production/editorial tools,! and overall cost of production, will be transferred into the development of a more refined product to be tested at larger scale.
keywords e-learning tutorials; media richness; learning effectiveness; cognitive style; computer visualization techniques
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
doi https://doi.org/10.52842/conf.acadia.2006.230
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id ascaad2006_paper16
id ascaad2006_paper16
authors Davey, Jon Daniel
year 2006
title Musing Heideggerian Cyberspace
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Where we do we make our “being?” Since our existence [being-there = Dasein] is the original place of intelligibility, fundamental ontology must clarify the conditions of having any understanding which itself belongs to the entity called Dasein. Today Dasein in increasing becoming more and more digital, in fact all activity is digital or becoming digital in one mode or another, it’s ubiquitous! On the pragmatic side corporate architecture as well as its daily interaction and transaction are all digital. With the advent of games as well as webmasters using VRML or some equivalent of it posses the questions and concerns as who will design the digital domains, graphic artists, IT personnel, game developers and where will we make our being? As architects and designers where will our “digital gesamtkunstwerk” be? Making places for human inhabitation in a nonphysical space raises interesting questions concerning presence, authenticity, adaptability, orientation, and suspension of disbelief. What kind of activities can be supported by nonphysical spaces? What will it take to support them in a socially and psychologically appropriate manner? And WHO will design them? On the applied side this ontological view is demonstrated in an Interior Design Corporate Office Design Studio that has been taught for a decade wherein students are required to develop an ECommerce, a business deemed to succeed including the Corporate Office, facility program, space planning, corporate image, interiors, graphics, webpage, and logo. The semester project has one unique design stipulation: The one major design requirement is that the “feel” of the reception has the same “feel” as the website. A phenomenological sameness…all work is accomplished with a plethora of digital media. This design process is still in its infancy.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_670
id 2006_670
authors Fricker, Pia and Alexandre Kapellos
year 2006
title Digital Interaction in Urban Structure - Reflection : Six years and still scanning
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 670-673
doi https://doi.org/10.52842/conf.ecaade.2006.670
summary The focus in our elective course for Master Students of Architecture is the following: in parallel to a more traditional way of analysing urban structures, how can the application of multimedia technology, networking and the integration of interactive computer applications lead to a different approach? The objective of our teaching and research project is to find out in what ways urban structure and specific features of a city can be represented by interactive interfaces and the use of CNC technology. Our attitude is based on small-scale approach: the sum of these microanalyses gives us the broader picture, the system or mechanisms of the city. We do not dive into the city but emerge from it. This reflection leads to a new understanding in the organisation of complex urban structures, highlighting and revealing different connections and relationships, thus giving a different final image.
keywords Abstract Types of Spatial Representation; Interaction – Interfaces; Innovative Integration of Multimedia Technology; Digital Design Education
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2006_633
id caadria2006_633
authors WAN-YU LIU
year 2006
title THE EMERGING DIGITAL STYLE: Attention shift in architectural style recognition
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 633-635
doi https://doi.org/10.52842/conf.caadria.2006.x.g4f
summary “Style” has long been an important index to observe the design thinking of designers in architecture. Gombrich (1968) defined style as a particular selection from the alternatives when doing things; Ackerman (1963) considered that a distiguishable ensemble of certain characteristics we call a style; Schapiro (1961) pointed out that style is constant forms, and sometimes the constant elements, qualities and expression; Kirsch (1998), Cha and Gero (1999) thought of style as a form element and shape pattern. As Simon and others referred to, style emerged from the process of problem solving, Chan (1994, 2001) ever devised a serious of experiments to set up the operational definitions of style, further five factors that relate to generating styles. Owing to that the greater part of sketches and drawings in the design process couldn’t be replaced by computer-aided design systems (Eisentraut, 1997), designers must shift between different problem-solving methods while facing different design problems. The purpose in this research is to discuss the influences of computer usage on style generation and style recognition: The employment of certain procedural factors that occurred in the design processes that using conventional media is different from the ones that using computer media? Do personal styles emerge while designers shifting between different media in the design processes? Does any unusual phenomenon emerge while accustomed CAD-systems designers recognizing a style?
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2014_164
id sigradi2014_164
authors Moroni Dotoranda, Janaina Luisa da Silva; Paulo Edi Rivero Martins, Dr.Giuseppe Lotti
year 2014
title Estilo de herramientas didácticas que favorecen la creatividad. Tema: Nuevas metodologías de aprendizaje
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 245-249
summary Creativity is an important factor for innovators. According to Eguchi and Pinheiro (2008) the basis of design is innovation because of the use creative methodology. It’s important to remember that the word “project” comes from the Latin “proyectus”, meaning “a forward throwing action”. According to Ramos (2006), “educating for creativity is essential.” Beetlestone (2000), De Bono (1993), Munari (1997) and Pawlak (2000) argue that as we’re children we’re curious to find answers to everything, but that traditional schooling brakes the creativity. This research is a methodological test which aims to identify the reasons for student’s selection of specific creative tools used in university projects.
keywords Creativity; Innovation; Design; Education; Freedom
series SIGRADI
email
last changed 2016/03/10 09:55

_id ascaad2006_paper8
id ascaad2006_paper8
authors Abdullah, Sajid; Ramesh Marasini and Munir Ahmad
year 2006
title An Analysis of the Applications of Rapid Prototyping in Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Rapid prototyping (RP) techniques are widely used within the design/manufacturing industry and are well established in manufacturing industry. These digital techniques offer quick and accurate prototypes with relatively low cost when we require exact likeness to a particular scale and detail. 3D modeling of buildings on CAD-systems in the AEC sector is now becoming more popular and becoming widely used practice as the higher efficiency of working with computers is being recognized. However the building of scaled physical representations is still performed manually, which generally requires a high amount of time. Complex post-modernist building forms are more faithfully and easily represented in a solid visualization form, than they could be using traditional model making methods. Using RP within the engineering community has given the users the possibility to communicate and visualize designs with greater ease with the clients and capture any error within the CAD design at an early stage of the project or product lifecycle. In this paper, the application of RP in architecture is reviewed and the possibilities of modeling architectural models are explored. A methodology of developing rapid prototypes with 3D CAD models using methods of solid freeform manufacturing in particular Fused Deposition Modeling (FDM) is presented and compared against traditional model making methods. An economical analysis is presented and discussed using a case study and the potential of applying RP techniques to architectural models is discussed.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_106
id 2006_106
authors Achten, Henri
year 2006
title Feature clusters for online recognition of graphic units in drawings
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 106-112
doi https://doi.org/10.52842/conf.ecaade.2006.106
summary Automated recognition of sketch drawings can provide the means for a natural interface between the designer and a design support system. Sketch drawing recognition is knowledge-intensive in the sense that the system must know what to look for in a drawing. In earlier work, we identified 24 different types of representations, termed graphic units. For recognition of graphic units we combine a multi-agent approach and online recognition. Each agent is specialised for one graphic unit. It continuously parses the online input stream for stroke features that fall within its scope. When an agent-specific threshold is reached, the agent puts a claim. Each agent has a specific cluster of features that can be viewed as distributed over a decision tree. The activation pattern of feature clusters over the decision tree is an indication which graphic unit is likely to be identified by the system. In this paper, we present the exhaustive set of features for agents and a binary decision tree over which the features are distributed.
keywords Image recognition; sketches; graphic units; feature-based modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2022_187
id sigradi2022_187
authors Andia, Alfredo
year 2022
title SynBio-Design: Building new infrastructures and territories with Synthetic Biology.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1213–1224
summary Which kind of imagination do we need for the future of our planet? In the past 150 years, we have completely transformed our biosphere. Today we have arrived at points of no return in global warming! The temperature of the Arctic Ocean will increase by 3-5°C by mid-century. This will lead to disastrous ocean acidification, sea-level rise, and worst of all the thawing of the permafrost that will release 1 trillion tons of carbon dioxide into the atmosphere. In this paper, we argue that building with biology will be the most important force to transform our planet. Since 2006, Synthetic Biology (SynBio) has surfaced as the fastest-growing technology in human history. SynBio involves emerging techniques that allow us to design, edit, and engineer all kinds of living organisms. In this paper, we elaborate on its potential development in growing infrastructures and its impacts on architectural thinking.
keywords Bio-Inspired Design, Synthetic Biology, Bio-Architecture, Climate Change, Biotechnology
series SIGraDi
email
last changed 2023/05/16 16:57

_id sigradi2006_c159e
id sigradi2006_c159e
authors Aroztegui Massera, Carmen
year 2006
title Aprendiendo del cine: Evaluación de códigos formales y estrategias narrativas en una instalación de video. [Learning from the movie: Formal codes and narrative strategies in a video installation]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 415-419
summary Architectural animations often evidence limitations when trying to get across our design intensions in terms of the experiencing of a place. When architects design a space, they propose not only geometry and space functionality, All in all, any architectural design implies a way of experiencing the space. But how can we communicate it? Narrative films developed - in the last century - communication conventions that allow the audience to feel transported to the time and place of the movie. However, architects have barely introduced these conventions into their animations. The objective of this paper is to review two examples - a scene on a film and a video installation- that could help architects to use film codes creatively in when communicating the experiencing of a place.
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2006_e159b
id sigradi2006_e159b
authors Barrow, Larry
year 2006
title Digital Design Pedagogy - Basic Design - CADCAM Space Box Exploration
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 127-130
summary This proposed paper will highlight the work of a “pre-architecture” graduate student’s work produced in a “Digital Design II” course in Spring 06. This student has a bachelor’s degree in Architectural Technologies and hopes to attend a “professional” degree program in architecture after completing our Master of Science degree program. The student entered our “pre / post-professional” graduate program as a means of learning more about design, technology and architecture. This provided a rare opportunity to do “research” in the area of digital technology in the early formative phases of a new architecture / design students development. The student chose to study “shadows” as a means of design inquiry. The primary focus of the work was the study of various “4” x 4” x 4” “space-cubes.” The student was given various “design” constraints, and “transformative” operations for the study of positive-negative space relationships, light+shadows, and surface as a means of gaining in-sight to form. The CADCAM tools proved to be empowering for the student’s exploration and learning. With the recent emergence of both more user-friendly hardware and software, we are seeing a paradigm shift in design “ideation.” This is attributed to the evolving human-computer-interface (HCI) that now allows a fluidic means of creative design ideation, digital representation and physical making. Computing technology is now infusing early conceptual design ideation and allowing designers, and form, to follow their ideas. The argument will be supported with primary evidence generated in our pedagogy and research that has shown the visualization and representational power of emerging 2D and 3D CADCAM tools. This paper will analyze the basic “digital design” process used by the writer’s student. Architectural form concepts, heretofore, impossible to model and represent, are now possible due to CADCAM. Emerging designers are integrating “digital thinking” in their fundamental conceptualization of form. These creative free-forms are only feasible for translation to tectonic form using digital design-make techniques. CADCAM tools are empowering designers for form exploration and design creativity. Current computing technology is now infusing the creative design process; the computer is becoming a design “partner” with the designer and is changing form and architecture; thus, we are now seeing unprecedented design-make creativity in architecture.
keywords Basic Design; CADCAM; Digital Design; Virtual 3D Models; Physical 3D Printed Models
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia06_150
id acadia06_150
authors Boza, Luis Eduardo
year 2006
title (Un) Intended Discoveries Crafting the Design Process
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 150-157
doi https://doi.org/10.52842/conf.acadia.2006.150
summary Computer Numeric Controlled (CNC) fabrication machineries are changing the way we design and build. These technologies have increased productivity through greater efficiencies and have helped to create new forms of practice, including increased specializations and broader collaborative approaches. (Kieran Timberlake 2003: 31). However, some argue that these technologies can have a de-humanizing effect, stripping the human touch away from the production of objects and redistributing the associated skills to machines. (Dormer 1997: 103). The (Digital) Craft studio explored the notions of technology and craft to understand how and when designers should exploit the tools employed (both the hand and the machine) during the design and production processes.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_786
id 2006_786
authors Burry, Jane and Mark Burry
year 2006
title Sharing hidden power - Communicating latency in digital models
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 786-793
doi https://doi.org/10.52842/conf.ecaade.2006.786
summary As digital spatial models take on the complex relationships inherent in a lattice of dependencies and variables, how easy is it to fully comprehend and communicate the underlying structure and logical subtext of the architectural model: the metadesign? The design of a building, the relationships between a host of different attributes and performances was ever a complex system. Now the models, the representations, are in the early stages of taking on more of that complexity and reflexivity. How do we share and communicate these modelling environments or work on them together? This paper explores the issue through examples from one particular associative geometry model constructed as research to underpin the collaborative design development of the narthex of the Passion Façade on the west transept of Gaudi’s Sagrada Família church, part of the building which is now in the early stages of construction.
keywords Design communication; CAD CAM; mathematical models
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_002
id 2006_002
authors Chris Yessios
year 2006
title The Singularity of Design Creativity
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. x-xvi
doi https://doi.org/10.52842/conf.ecaade.2006.x.p9l
summary Singularity is the moment when an arithmetic progression converts into a geometric and acceleration takes off. Artificially creative design, as is manifested through the use of contemporary digital tools, is at such a moment in time and its impact on our cultural evolution is undeniable. A few decades ago, in the earlier days of computer aided design, we were asking whether CAD really had any effect on the quality of design and on our physical environment. We now know it does and the examples of a new architecture are plentiful. We shall look at some examples as more appear daily.
keywords Singularity; artificial creativity; design
series eCAADe
type normal paper
email
more http://www.ecaade.org
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_160485 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002