CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id 2006_898
id 2006_898
authors Tsangrassoulis, Aris; Vassilis Geros and Vassilis Bourdakis
year 2006
title Energy conscious automated design of building façades using genetic algorithms
doi https://doi.org/10.52842/conf.ecaade.2006.898
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 898-902
summary Various European Directives have been issued concerning the energy efficiency of the buildings. The target is the achievement of a near optimum energy efficient environment while at the same time satisfying occupant needs throughout the year within an integrated “holistic” or “whole building” framework. A variety of different antagonistic parameters should be balanced such as window size and glazing transmittance or daylighting and shading and in most cases this requires an examination of various scenarios. Thus the design of building envelopes should address a careful balance between internal requirements and loads, the materials and properties of the façade and the external environment. Nowadays, the available tools for façade design-in terms of building’s energy efficiency- are inappropriate for interactive or creative use. In this paper we examine the development of a genetic algorithm which is capable to optimise the opening areas, glazing properties and shading configurations –on the basis of minimum energy consumption- and then to design automatically simplistic alternative scenarios of the building façade.
keywords Genetic algorithms; building energy efficiency
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id bsct_dervishi
id bsct_dervishi
authors Dervishi, Sokol
year 2006
title Computational Derivation of Incident Irradiance on Building Facades based on Measured Global Horizontal Irradiance Data
source Vienna University of Technology; Building Science & Technology
summary Reliable simulation of buildings' energy performance requires, amongst other things, the availability of detailed information on the magnitudes of incident solar radiation on building facades. However, the availability of the measured data concerning the incident solar radiation on vertical surfaces is restricted to only few locations. In addition, concurrent measurements of horizontal global and horizontal diffuse (or direct normal) irradiance data are likewise available only for a limited number of locations. In contrast, global horizontal irradiance data is available for many locations. This research demonstrates how to computationally derive incident irradiance values on vertical (or otherwise inclined) building surfaces from measured globalirradiance values. Given this context, three methods are considered to compute incident vertical irradiance values based on measured global horizontal irradiance data. Vertical solar irradiance measurements are described. Then, the computationally derived values are compared withcorresponding measurements. The results are evaluated based on their correlation coefficients and relative error. Finally, the application of horizontal-to- vertical irradiance mapping is demonstrated using the case of an office building at Vienna University of Technology.
keywords Horizontal and vertical irradiance, measurement and simulation, energy performance
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:30

_id sigradi2006_e171c
id sigradi2006_e171c
authors González Böhme, Luis Felipe and Vargas Cárdenas, Bernardo
year 2006
title Foundations for a Constraint-Based Floor Plan Layout Support in Participatory Planning of Low-Income Housing
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 283-287
summary We introduce the foundations of a novel approach that deals with constraint-based design methods to supporting participatory planning processes of low-income dwellings. We examine the space allocation problem inside the architectural domain on the basis of graph theory and combinatorics, providing a concise mathematical background for an implementation strategy called FLS (Floor plan Layout Support), which is analyzed here for the first time regarding this particular context of application. The philosophy underlying a design method that is mainly driven by the formulation of distinct constraints suggests to avoid the traditional procedure of first to create a yet not necessarily valid instance of the eventual design solution by directly choosing specific parameter values of its shape, and later on to evaluate its validity by confronting the designed model to a set of applicable constraints. Instead, constraint-based design poses a search procedure that operates in a space of planning-relevant constraint sets. The FLS methodology integrates some few principles of constraint-based automated reasoning with high user interactivity, into a design environment where as much dwellers as planners can collaboratively work in solving spatial organization problems of housing projects. The FLS model of application makes use of a combination of dweller-specified constraints, planning and zoning regulations, and a small library of modular space units. Constraint-based design ! methods are particularly capable of supplying efficient support for the collaborative involvement of dwellers into the architectural programming process of her/his own home. Mainly, because dwellers themselves tend to describe their space need and design intentions as a set of constraints on room quantity, space utilization, circulation system, allocation of available furniture, available budget, construction time, and so forth. The goal is to achieve an integrated tool for finding and modelling topologically valid solutions for floor plan layout alternatives, by combining user-driven interactive procedures with automatic search and generative processes. Thus, several design alternatives can be explored in less time and with less effort than using mainstream procedures of architectural practice. A FLS implementation will constitute one system module of a larger integrated system model called Esther. A FLS tool shall interact with other functional modules, like e.g. the BDS (Building Bulk Design Support), which also uses constraint-based design methods. A preliminary procedural model for the FLS was tested on Chile’s official social housing standards (Chilean Building Code – OGUC. Art. 6.4.1) which are very similar to most Latin American housing programs currently in operation.
keywords constraint-based design; floor plan layout; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2023_367
id sigradi2023_367
authors Andia, Alfredo
year 2023
title Programmable Bio-Matter Architecture
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1797–1808
summary Building with biology will be the most important platform to transform our planet in the next decades. Since 2006, Synthetic Biology (SynBio) has surfaced as the fastest-growing technology in human history. This field is allowing us to manipulate the genetic code, biology, food, and vaccines and ultimately aiming to reshape the very essence of existence. In this paper, we assess the development of SynBio and its impacts on architectural thinking, materials, and particularly in Architectural fiction. In this paper, we argue that there are at least three waves of impacts of SynBio technology in construction: Biomaterials, Engineered Living Materials (ELM), and Bio-Matter or biobots. We explore architectural thinking's domain, involving architects and engineers in research and startups. We embrace the architectural envisioning role and present our design work utilizing observed biological growth algorithms. Synthetic Biology urges questioning not only biomaterials but also the field's overarching vision.
keywords Synthetic Biology, Bio-Architecture, Climate Change, Biotechnology, Architecture
series SIGraDi
email
last changed 2024/03/08 14:09

_id 7987
id 7987
authors Dimitrios Makris, Ioannis Havoutis, Georges Miaoulis, Dimitri Plemenos
year 2006
title MultiCAD – MOGA A System for Conceptual Style Design of Buildings
source Conference Proceedings of the 9th 3IA (2006) International Conference on Computer Graphics and Artificial Intelligence, p73-84
summary The synthesis of the three-dimensional morphology of a building is one of the most important tasks in architecture. Space planning and morphology are of the most interesting and complex of architectural design problems. Architectural design is guided by the constraints on the spatial composition and the morphology of the final building. During the conceptual phase problems are characterised by fuzziness and complexity. Building requirements are ill-defined and contradictory. The designer should explore the solution space for alternative building solutions while refining requirements and style preferences. In this paper we present the development and implementation of an Evolutionary Declarative Design system prototype for the aid of conceptual style design of buildings. The system is a specific MultiCAD prototype system including architectural knowledge, architectural style and a multi-objective genetic algorithm. Two design cases are presented for two different architectural styles. The applicability and efficiency of the system prototype are discussed.
keywords declarative modelling, evolutionary design, multi-objective genetic algorithms, architectural conceptual design, constraints
series other
type normal paper
email
more http://3ia.teiath.gr/3ia_previous_conferences_cds/2006/Papers/Full/Makris_8.pdf
last changed 2007/11/29 15:55

_id a126
id a126
authors Finucane E, Derix C and Coates P
year 2006
title Evolving Urban Structures using Computational Optimisation
source Proceedings of the Generative Arts conference, Milan, 2006
summary This paper investigates the use of computer analogies for naturally inspired optimisation techniques as an aid to developing the site layout and massing for the new World Trade Centre development in Pristina Kosovo, which is being designed and developed by 4M Group architectural company, in conjunction with the Advanced Modelling Group Aedas. The development of a genetic algorithm will incorporate various techniques, that have been developed in the field of multi-objective optimisation, to create three dimensional massing models, and site layout solutions which partially fulfil the Prisina brief requirements, which are taken from specifications created by 4M Group. Genetic algorithms are based on natural evolutionary principles which are explained in this paper. It will incorporate Pareto concepts to manage the optimisation of the various objective functions. For example, these will include volume and position of units, which will ensure that the different and sometime conflicting needs of the site are balanced throughout the optimisation. This type of problem is often known as an NP-complete (non-determinate polynomial time) problem. This will provide architects and planners with a number of Pareto optimised site massing solutions as an aid to the design process. An initial investigation into the specifics of the Pristina site requirements, will be followed by an investigation into the the genetic algorithm which is created in Visual Basic for Applications (VBA) linked with AutoCAD as the graphical output of the code. The embryology (development) of the various solutions from the genetic information incorporates an ‘ant’ pheromone trail model, which simulates the action of ants during food foraging, as a tool for initial route planning within the site. Diffusion and cellular automata are used during the development of the solution to construct the massing for the site.
keywords urban planning, evolutionary algorithms, pareto optimization, Lindenmayer systems, ant-colony optimization, cellular automaton
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 18:33

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2012_036
id caadria2012_036
authors Kaushik, Vignesh Srinivas and Patrick Janssen
year 2012
title Multi-criteria evolutionary optimisation of building enveloped during conceptual stages of design
doi https://doi.org/10.52842/conf.caadria.2012.497
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 497–506
summary This paper focuses on using evolutionary algorithms during conceptual stages of design process for multi-criteria optimisation of building envelopes. An experiment is carried out in optimising a panelled building envelope. The design scenario for the experiment is based on the scenario described in Shea et al. (2006) for the building envelope of the Media Centre Building in Paris. However, in their research, the optimisation process only allowed panel configuration to be optimised. In this paper, the task is to approach the optimisation of the envelope of the same building, assuming it to be in the early phases of the design process. The space of possible solutions is therefore assumed to be much wider, and as a result both external building form and internal layout of functional activities are allowed to vary. The performance intent of the experiment remains the same as that of Shea et al. (2006), which was to maximise daylight and minimise afternoon direct sun hours in the building at certain specific locations.
keywords Multi-criteria optimisation; building envelopes; conceptual stages of design evolutionary algorithms; parametric design
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
doi https://doi.org/10.52842/conf.acadia.2007.284
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ecaade2007_068
id ecaade2007_068
authors Schindler, Christoph; Châtelet, Maud; Wiskemann, Barbara; Zieta, Oskar
year 2007
title Umbrella Schoolyard Roofs in Zurich
doi https://doi.org/10.52842/conf.ecaade.2007.035
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 35-42
summary The paper discusses a 1:1 student workshop on digital sheet metal fabrication organized in collaboration between ETH Zurich and the City of Zurich in 2005 and 2006. During the workshop a structure of fifteen sheet metal schoolyard roofs was designed, produced, and constructed by the participating students. The workshop was set up to explore how current academic topics such as CAD/CAM, digital fabrication with minimal tolerance, and design optimization with genetic algorithms could be incorporated in a permanent structure with legal building standards and a professional construction sequence.
keywords Teaching seminar workshop 1:1, digital sheet metal fabrication, pavilion roof structure, genetic algorithms
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2006_paper29
id ascaad2006_paper29
authors Bennadji, A. and A. Bellakha
year 2006
title Evaluation of a Higher Education Self-learning Interface
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This paper is a follow-up to a previous paper published in ASCAAD 2004 (A. Bennadji et al 2005). The latter reported on CASD (Computer Aided Sustainable Design) a self-learning educational interface which assists the various building’s actors in their design with a particular attention to the aspect of energy saving. This paper focuses on the importance of software evaluation and how the testing is done to achieve a better human-machine interaction. The paper will go through the summative evaluation of CASD, presents the output of this evaluation and addresses the challenge facing software developers: how to make an interface accessible to all users and specifically students in higher education.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
doi https://doi.org/10.52842/conf.acadia.2006.232
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2006_269
id caadria2006_269
authors MATTHIAS HAASE, ALEX AMATO
year 2006
title ND MODELLING FOR SUSTAINABLE ENVELOPES: The sustainable dimensions of envelope design
doi https://doi.org/10.52842/conf.caadria.2006.x.e6l
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 269-276
summary Sustainable development issues are currently the driving forces in many building projects. The building envelope is critical for the architectural expression as well as large parts of the environmental performance. This study tries to investigate the advantages of multidimensional computer aided modeling and simulation for a sustainable facade design approach. A first step towards nD modeling for sustainable design is to establish a list of parameter which are used as design criteria: Environmental performance, thermal visual and acoustic comfort. Computer simulation and analysis of different building elements can help to determine the performance according to a set of design parameter. Environmental impacts due to energy consumption are an important parameter but it is believed that comfort criteria need also to be accounted for.
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2006_557
id caadria2006_557
authors PREECHA MANESSATID, PETER J SZALAPAJ
year 2006
title THE DEVELOPMENT OF AN INTEGRATED ENVIRONMENTAL BUILDING DESIGN TOOL
doi https://doi.org/10.52842/conf.caadria.2006.x.n7f
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 557-559
summary Environmental design implementations are generally applied within limited and specialised areas of environmental design making them difficult to use intuitively by designers (Maneesatid and Szalapaj, 2003). Building simulations have mostly focused on accurate parameters and physical properties of building elements. Such tools typically require numerous numerical data which is often only accurately known in the detail design stages. Conventional environmental building design systems (EBS) have typically required highly experienced users who are familiar with extensive qualitative input and output requirements. A successful architectural design solution that is both energy efficient and environmentally friendly, cannot be obtained simply by additively combining a set of discrete specialist analyses. A move towards better architectural design with environmental considerations can be achieved by allowing designers themselves to express relationships between salient environmental parameters that can subsequently be analysed in integrated ways. This presentation is concerned with the issues involved in developing a quick and intuitive interface for expression of relationships between environmental parameters.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2006_e145a
id sigradi2006_e145a
authors Heiss, Leah
year 2006
title Empathy over distance: Wearables as tools for augmenting Remote Emotional Connection
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 66-69
summary Mainstream communication modes emphasise network speed, connection access, resolution, portability, and aesthetic design as primary to the success of their products. Within this vision a three by four centimetre screen and high resolution display are deemed adequate to emulate the intensities and complexities of face-to-face connection with loved ones. They allow us to ‘be there with you’ from wherever we might be. Yet interpersonal communication is a massively complex phenomenon. It involves a plethora of micro-activities which occur at a physical, physiological, and psychological level allowing us to recognise at a cellular scale intention, motive and emotional authenticity. Our conscious and non-conscious involvement in spatially collocated communication is substantial due to these myriad channels of real-time bi-directional information transfer. While contemporary communications technologies have the capacity to mediate our relationships, they fall short of encouraging the richness of spatially co-present interaction. The research discussed in this paper investigates the potential expansion of remote connection when electronically enhanced apparel is incorporated into the communications mix. Rather than pursuing the manifold functionalities of traditional communications media the garments discussed focus solely on the goal of enhancing empathy between physically distant individuals. This paper reports on the development and testing of a range of garments that conduct presence information between remotely located people. The garments sense, process, transmit and receive the heartbeat wavelength (ECG). They are enabled with ECG sensors, signal processing equipment, small vibration motors, and radio transceivers which allow users to ‘feel’ the heartbeat of a remote friend/lover/relative as vibration through their garment. The prototypes aim to enrich the remote communications experience through reintroducing an embodied, tactile dimension that is present in face-to-face communication. A range of user testing trials will be discussed which have been undertaken to assess the impact of the garments at a conscious and a non-conscious level. Conscious experiences were gauged through qualitative testing, by way of interviews and unsolicited written reactions, which have provided a range of engaging emotional responses. Non-conscious physiological reactions were assessed by recording ECG throughout user-testing periods. This data has been processed using HRV (heart rate variability) analysis software, running on MatLab. Preliminary results suggest that users have strong conscious and non-conscious reactions to the experience of wearing the prototype garments. The paper will describe the data processing techniques and findings of the user testing trials. The development of biosignal sensing garments has raised a range of issues including: innovative potentials for embedded peripheral awareness media; the expansion of the classical body to incorporate remotely sensed information; the issue of data semantics and the development of intensely personal non-verbal languages; and the issue of corporeal privacy when one’s biological information is exposed for potential download. They also bring into question how our bodily experiences might change when we incorporate remote sensory systems.
keywords Enabled apparel; emotional tools; biosignals
series SIGRADI
email
last changed 2016/03/10 09:53

_id 2006_302
id 2006_302
authors Dounas, Theodoros and Anastasios M. Kotsiopoulos
year 2006
title Generation of alternative designs in architectural problems using Shape Grammars defined with animation tools - A computer implementation of shape grammars using modelling and animation software
doi https://doi.org/10.52842/conf.ecaade.2006.302
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 302-307
summary We present a model of generation of alternative designs to selected architectural and spatial configurations of small complexity. Specifically we present a production pipeline of architectural / spatial configurations using the context of animation and time based design tools. Our model consists of time and space design constraints of boundaries / objects affecting a given architectural design, thus producing an alternative solution for every timeframe of the animation cycle. The alternative designs vary from the original according to their temporal and/or spatial distance from the original object on the animation time-line. The constraints placed upon the objects , used as actuators of Shape Grammars, are defined informally by the user/designer while their influence can vary according to time, speed, location, configuration of the object and/or the constraint itself. However the constraints further function as formal rules for the Shape Grammar creation so that our model tries to predict ahead of time the emergence of alternate designs. The employ of animation tools [shape driven curves, speed and time-line functions,parent child relationships] in the shape generation of our model empowers the user/designer to configure whole sets of shapes and designs interactively and without the need to define every solution independently. Simultaneously, a different, time-focused view of our model describes its use on designs that develop different configurations over time. Thus a duality of our model is established: either the animated schema may be a sum or family of various designs or the animated time-line represents a single design which changes over time. Finally the possibility of an automated analysis of every design is discussed, using Space Syntax diagrams so the designer can quickly evaluate the various spatial configurations produced by a single original.
keywords shape computation; shape grammar computer implementation; alternative designs; animation software techniques
series eCAADe
email
last changed 2022/06/07 07:55

_id 5094
id 5094
authors d’Estrée Sterk, Tristan
year 2006
title Responsive Architecture: User-centered Interactions within the Hybridized Model of Control
source Proceedings of the GAME, SET, MATCH II, conference at the Technical University of Delft, Netherlands, 29 March - 1 April 2006, pp. 494-501
summary In the September 1969 issue of Architectural Design, Andrew Rabeneck wrote about the use of cybernetic devices within an automated architecture. He hypothesized that the concept of ‘flexibility’ was introduced to architecture because existing building technologies were inherently inflexible. He argued that architects should use cybernetic technologies to produce completely new types of increasingly flexible, user-centred, buildings.

Three years later, Yona Friedman wrote about the changing relationship between clients and architects. He said that a new design methodology was needed because architects could not assess the future spatial needs of building users accurately enough. Proposing a new model, he split architectural design in two complementary halves, hardware design and software design, reasoning that this would give users the opportunity to adapt built spaces to suit their needs.

Both of these ideas describe approaches to the production of an architecture that can change shape and configuration in response to changing patterns of use. Rabeneck’s approach illustrates the benefit of predictive technologies and automation, while Friedman’s model illustrates the benefit of user intervention and direct manipulation. This paper discusses developments in the field of responsive architecture in relation to two opposing user-centred interaction methodologies. It proposes methods for controlling responsive buildings and suggests that human computer interaction methodologies need to be re-thought and extended when applied within intelligent, responsive, architectures.

keywords Responsive architecture, User-centred design, HCI, Intelligent buildings
series other
type normal paper
email
more admin
last changed 2017/04/10 13:08

_id 2006_352
id 2006_352
authors Fricker, Pia and Oskar Zieta
year 2006
title CNC Compliant Methods of Design - Understanding Technology
doi https://doi.org/10.52842/conf.ecaade.2006.352
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 352-357
summary This paper investigates new design methods, showing the experimental use of new digital tools, CNC-techniques and technologies so as to expand the definition of contemporary architecture. This investigation of new technologies extends the traditional practice of architectural design to include issues of design, multimedia, programming, control systems and fabrication by using computer controlled machines. The main teaching and research focus of the Master of Advanced Studies in Architecture (MAS), Specialization in Computer Aided Architectural Design (CAAD), Prof. Dr. Ludger Hovestadt, is the computer based architectural design and its automated production. The aim of our research and teaching project is to achieve a close connection between design and production by embedding the “digital chain” in the whole process. The digital chain is a design and production sequence with no analogue steps; the process offers high flexibility in terms of design and production. The use of new digital tools in architecture extends the profession beyond traditional design.
keywords Digital Methods of Construction; Representation; Integration of CNC technology in Education; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac20064103
id ijac20064103
authors Loveridge, Russell; Strehlke, Kai
year 2006
title The Digital Ornament using CAAD/CAAM Technologies
source International Journal of Architectural Computing vol. 4 - no. 1, 33-49
summary New digital technologies are challenging the traditions of the architectural design methodology, the relationship between context and design, and the dependency on skilled workmanship for the fabrication of beautiful and complex architecture. Intellectually, applications of digital technologies are also allowing for the reinvestigation, reinterpretation, and redevelopment of historical concepts, theories, and skills[1]. Our focus of ornament in this paper is presented as a constrained architectural testing ground, a reduced issue that still addresses the primary issues of geometry, aesthetics, individualism, and the transferal of design to materiality. Our work on digital ornament combines the traditionally intuitive skills of geometric & graphic manipulations with easily edited input (variables and digital images), control through parametric programming, and automated output (CNC manufacturing). The combination of these processes allows for efficient diversity and uniqueness of design, while also compensating for the increasing cost and declining availability of skilled artisans for the physical fabrication. The presented projects in teaching, research, and professional activities demonstrate our ongoing experiments with new technologies of programmed surface modeling and computer numerically controlled manufacturing (CNC manufacturing). This work has been incorporated in real world projects, both in the revitalization historic buildings, and in new applications of ornament in contemporary architecture.
keywords 3D Modeling; Parametric Design; Image Processing; Design Education; Cam
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00004
last changed 2007/03/04 07:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_189390 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002