CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 263

_id 2006_684
id 2006_684
authors De Bodt, Kathleen
year 2006
title SoundScapes & Architectural Spaces - Spatial sound research in digital architectural design
doi https://doi.org/10.52842/conf.ecaade.2006.684
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 684-689
summary The paper presents ongoing research focusing on the development of digital tools and methodologies for spatial design based on non-Euclidean geometries. It addresses the way sound can be used both conceptually and acoustically in the early stages of the design process, examining digital architectural design and modeling based on three-dimensional sound visualization and the acoustical analysis and evaluation of complex curved surface geometry. The paper describes SoundMatrix, the first part of a digital design tool created by using Max/Msp/Jitter, to assist in the preliminary design of building façades in small-scale urban environments, specifically studying the possibilities of curvature to decrease sound reflection between opposing street façades. Examples from a workshop with the SoundMatrix application illustrate the real-time 3D authoring and sound spatialisation processing currently implemented in the tool.
keywords graphical programming; performance-based design; generative design
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia06_536
id acadia06_536
authors Sprecher, A., Ahrens, C., Neuman, E.
year 2006
title The Hylomorphic Project
doi https://doi.org/10.52842/conf.acadia.2006.536
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 536-537
summary The Hylomorphic Project is a complex canopy structure, genetically evolved as a vital entity that reacts to changing data streams while configuring the architectural form. For the Hylomorphic Project, Open Source Architecture (OSA) together with structural engineer Prof. Kristina Shea and Marina Gourtovaia of Cambridge University (UK) developed genetic algorithms. Performs in eifForm software, an experimental computer-aided design system for structural synthesis, the algorithm is based in computational environments as a methodology for form finding and material expression that goes beyond the formal articulation of the computational procedure. This procedure simulates a topological condition of natural form evolution that can be consolidated according to innumerable trajectories. Seeking dynamic, flexible and continuous evolution procedures, the software provides the required conditions for this type of the design as it consists of a computational core, which is written in C, a fast low-level compiled language. The modules providing interactive access to the core and the graphical user interface (GUI), a high-level scripting language written in Python, allow for easy customization of the software according to a design task in hand.
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
doi https://doi.org/10.52842/conf.acadia.2006.232
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

_id bsct_dervishi
id bsct_dervishi
authors Dervishi, Sokol
year 2006
title Computational Derivation of Incident Irradiance on Building Facades based on Measured Global Horizontal Irradiance Data
source Vienna University of Technology; Building Science & Technology
summary Reliable simulation of buildings' energy performance requires, amongst other things, the availability of detailed information on the magnitudes of incident solar radiation on building facades. However, the availability of the measured data concerning the incident solar radiation on vertical surfaces is restricted to only few locations. In addition, concurrent measurements of horizontal global and horizontal diffuse (or direct normal) irradiance data are likewise available only for a limited number of locations. In contrast, global horizontal irradiance data is available for many locations. This research demonstrates how to computationally derive incident irradiance values on vertical (or otherwise inclined) building surfaces from measured globalirradiance values. Given this context, three methods are considered to compute incident vertical irradiance values based on measured global horizontal irradiance data. Vertical solar irradiance measurements are described. Then, the computationally derived values are compared withcorresponding measurements. The results are evaluated based on their correlation coefficients and relative error. Finally, the application of horizontal-to- vertical irradiance mapping is demonstrated using the case of an office building at Vienna University of Technology.
keywords Horizontal and vertical irradiance, measurement and simulation, energy performance
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:30

_id acadia06_556
id acadia06_556
authors Johnson, J., Gattegno, N.
year 2006
title Future Cities Lab | Energy Farm: Seoul Opera House
doi https://doi.org/10.52842/conf.acadia.2006.556
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 556-559
summary The patterning ranges are developed by merging images of the river surface with tonal ranges that pair with the desired transparency of the metal surface. Water surface images were chosen for the non-uniform distribution of tone. Light tonal areas create small punches, while dark tonal areas create larger punches. The water composite image is rasterized in a half-tone patterning and converted to fabrication data with RhinoScripts for CNC production.
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2006_269
id caadria2006_269
authors MATTHIAS HAASE, ALEX AMATO
year 2006
title ND MODELLING FOR SUSTAINABLE ENVELOPES: The sustainable dimensions of envelope design
doi https://doi.org/10.52842/conf.caadria.2006.x.e6l
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 269-276
summary Sustainable development issues are currently the driving forces in many building projects. The building envelope is critical for the architectural expression as well as large parts of the environmental performance. This study tries to investigate the advantages of multidimensional computer aided modeling and simulation for a sustainable facade design approach. A first step towards nD modeling for sustainable design is to establish a list of parameter which are used as design criteria: Environmental performance, thermal visual and acoustic comfort. Computer simulation and analysis of different building elements can help to determine the performance according to a set of design parameter. Environmental impacts due to energy consumption are an important parameter but it is believed that comfort criteria need also to be accounted for.
series CAADRIA
email
last changed 2022/06/07 07:49

_id bsct_paipai
id bsct_paipai
authors Paipai, Angeliki
year 2006
title Computational Assessment of Passive Cooling Methods in Buildings
source Vienna University of Technology; Building Science & Technology
summary Various factors have been contributing to a recent steady increase in buildings’ demands for cooling energy: environmental changes, increased heat gains due to equipment and growing expectations in view of acceptable indoor thermal conditions. Given this context, it’s both environmentally and economically meaningful to develop and implement passive cooling techniques toward the reduction of buildings’ demand for cooling energy. In the present study, we use parametric simulations to compute the relative impact of various passive cooling technologies toward the reduction of overheating risk in residential buildings. The cooling measures under examination are shading, natural ventilation (emphasizing on night time natural ventilation), and the application of phase change materials (PCM). The buildings that are being used for the parametric studies are an apartment and a double-storey single house, both simulated for a Mediterranean climate (Athens, Greece) and middle-European one (Vienna, Austria). The results showed that passive cooling methods can significantly contribute the reduction of overheating in buildings. In particular shading and night time ventilation have been shown to be very effective especially if applied in combination. PCMs on the other hand, showed a limited potential in the reduction of overheating risk, at least under the specific climatic circumstances.
keywords Passive cooling; Parametric modeling; Thermal storage; Night ventilation; Phase Changing materials
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:30

_id sigradi2006_e165b
id sigradi2006_e165b
authors Angulo, Antonieta
year 2006
title Optimization in the Balance between the Production Effort of E-learning Tutorials and their related Learning Outcome
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 122-126
summary This paper provides evidence on the level of media richness that may be cost effective in the development of e-learning tutorials for teaching and learning computer visualization techniques. For such a purpose the author provides an analysis of low-cost / high-impact media rich products, the effort and cost required in their development and the measurement of related learning outcomes. Circa twenty years of R&D of multimedia and hypermedia applications for instruction have demonstrated the benefits of communicating relevant information to learners using engaging media. Based on this evidence, this paper assumes that due to the cognitive style of design students, the instructional packages for learning computer techniques for design visualization that are rich in media content, tend to be more effective. Available visualization technologies make the development of e-learning tutorials feasible and apparently the logical way to implement our instructional packages. However the question in the development of e-learning tutorials becomes a more strategic one when we are called to reach a level of optimization between producing a package with a basic standard, namely; text & still-graphic based tutorials, or a state-of-the-art package that is based on video demonstrations (more than enough?) that can accommodate the students’ learning requirements and also our production costs. The costs include the human resources (instructor, producers, assistants and others) and the material resources (hardware and software, copies, and others) involved in the creation of the e-learning tutorials. The key question is: What is good enough, and what is clearly superfluous? In order to confirm our hypothesis and propose a relevant balance between media richness and learning effectiveness, this paper describes an experiment in the use of two different levels of media richness as used to deliver instructions on the production of computer animations for design visualization. The students recruited for this experiment were fairly familiarized with the use of 3D modeling concepts and software, but had no previous knowledge of the techniques included in the tutorials; in specific; camera animation procedures. The students, separated in two groups, used one of the two methods; then they proceeded to apply their newly acquired skills in the production of an animation without using the help of any external means. The assessment of results was based on the quality of the final product and the students’ performance in the recall of the production procedures. Finally an interview with the students was conducted on their perception of what was accomplished from a metacognitive point of view. The results were processed in order to establish comparisons between the different levels of achievement and the students’ metacognitive assessment of learning. These results have helped us to create a clear set of recommendations for the production of e-learning tutorials and their conditions for implementation. The most beneficial characteristics of the two tested methods in relation to type of information, choice of media, method of information delivery, flexibility of production/editorial tools,! and overall cost of production, will be transferred into the development of a more refined product to be tested at larger scale.
keywords e-learning tutorials; media richness; learning effectiveness; cognitive style; computer visualization techniques
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2006_e048c
id sigradi2006_e048c
authors Beck, Mateus Paulo; Brener, Rafael; Giustina, Marcelo and Turkienicz, Benamy
year 2006
title Light and Form in Design – A Computational Approach
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 254-257
summary Shape perception is strongly influenced by the reciprocal relation between light and form. Computational applications can increase the number of design alternatives taking into account possible variations in the relation between light and form. The aim of this study is to discuss a pedagogical experience carried out with 5th semester architectural students, based on a series of exercises prior to the term project. The exercises were concerned with the relation between light and form from an aesthetical point of view and should be understood as examples for the use of computers as tools to creatively accelerate the process of design and learning. The paper is divided in five parts. The first one describes the conceptual background for the exercises, a descriptive method for the identification of light effects in architectural objects based on ideas of shape emergence. The exercises’ methodology is explained in the second part, referring to the use of computational applications in 3-dimensional modeling, material and light simulation. The methodology includes different phases: –creation of bi-dimensional compositions according to symmetry operations; –creation of a minimal living space assigning functions to spaces originated from the former composition; –analysis of the impact of light on the form and spaces created; –alteration of form and materials creating new light effects considering the functions related to the spaces. The exercises alternate work in computational environment in two and three dimensions with the use of mockups, lamps and photography. In the third part the results –student’s design steps– are described. In the fourth part the results are analyzed and some conclusions are outlined in the fifth and last part. The use of emergent forms combined with computational tools has proved to be an effective way to achieve an accelerated understanding of the impact of light on forms as demonstrated by the evolution of the students work during the term and by their final results concerning the term project.
keywords Architectural Design; Lighting; Design Simulation; Virtual Environment
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
doi https://doi.org/10.52842/conf.acadia.2006.148
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_738
id 2006_738
authors Chen, Chiung-Hui and Mao-Lin Chiu
year 2006
title Space Tags and User Behavior Modeling - Applying agents to detect navigational patterns in urban streets
doi https://doi.org/10.52842/conf.ecaade.2006.738
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 738-745
summary Urban pedestrian studies on navigation have been conducted for developing applications to ease the task of exploring in a virtual environment. As navigation in virtual environments is evidently difficult and as many virtual worlds have been designed to be used by untrained visitors that explore the environment, navigational supports are critically needed. This study is aimed to collect information about the user needs in order to build a model of user preference and produce simulative scenarios that can reveal the navigational patterns related to street design. The study is based on the attention theory for studying people who are socially interacting with street activities and furniture within designated areas. Furthermore, the study attempts to apply agent interface develop a prototype system with space tags. Finally, the system and its applications, and major findings of these applications are reported
keywords space tags; navigational patterns; street; agent interface; user behavior
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac20053403
id ijac20053403
authors Datta, Sambit; Beynon, David
year 2005
title A Computational Approach to the Reconstruction of Surface Geometry from Early Temple Superstructures
source International Journal of Architectural Computing vol. 3 - no. 4, 471-486
summary Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id sigradi2006_e172c
id sigradi2006_e172c
authors Donath, Dirk and González Böhme, Luis Felipe
year 2006
title A Constraint-Based Building Bulk Design Support
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 278-282
summary We introduce an architecture practice-oriented implementation strategy of constraint-based methods called BDS (Building Bulk Design Support) to supporting bulk analysis during the architectural programming phase. We examine the optmization problem of site coverage and building massing according to a set of standard planning and zoning regulations, and try a problem solving approach based on the paradigm of constraint satisfaction problems. The case study, which is focused on the paticipatory planning of very low-income dwellings within the Latin American context, serves as testbed for a prototypical application of the adopted methodology. The BDS constitutes a novel approach on computer-aided bulk analysis, regarding this particularly relevant context of application. In the case of participatively planned low-income housing projects, efficiency regarding time and cost of planning directly affects dwellers’ quality of life, whereas elementary programming tasks such as bulk analysis lack appropriate state-of-the-art technological support. Traditional architectural planning methods demand a large domain-specific knowledge base and skillful planners. A planning process, which is mainly driven by the formulation of planning-relevant constraints and sets of solution alternatives, suggests to avoid architects’ traditional procedure of: 1. Create an (yet not necessarily valid) instance of the eventual design solution by directly choosing specific values for its shape parameters. 2. Evaluate its validity by confronting the designed model to a set of applicable constraints, which have to be satisfied. Instead, the constraint-based design methodology poses a search procedure that operates in a space of pertinent constraint sets. A computer-aided interactive search procedure to find more valid design solution alternatives in less time and with less effort is particularly qualified to supply efficient support for participatory planning activities carried out between dwellers and planners. The set of solutions for a building-bulk design problem is constrained by both a large complex system of planning and zoning regulations and the geometry of the eventual design solution itself. Given a considerable amount of such regulations, a regular size geometric constraint satisfaction system proved to be capable of providing a highly efficient, interactive modeling and evaluation tool for the formulation in real time of valid solution alternatives for an ordinary building-bulk design problem. A BDS implementation will constitute one system module of a larger integrated system model called Esther. A BDS tool shall interact with other functional modules, like e.g. the FLS (Floor plan Layout Support), which also uses constraint-based design methods.
keywords constraint-based design; bulk analysis; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:50

_id 2006_058
id 2006_058
authors Fukuda, Tomohiro; Kazuhiro Sakata; Wookhyun Yeo and Atsuko Kaga
year 2006
title Development and Evaluation of a Close-range View Representation Method of Natural Elements in a Real-time Simulation for Environmental Design - Shadow, Grass, and Water Surface
doi https://doi.org/10.52842/conf.ecaade.2006.058
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 58-65
summary In this research, a close-range view expression method used in real-time simulation based on virtual reality technology is developed for environmental design evaluation. After describing the purpose and accuracy of representation, the problem of natural element representation in a close-range view, which has not been developed yet, is clarified. Next, the close-range view expression method of shadows, grass, and water surface is developed. Furthermore, the developed method is applied to a number of actual environmental design projects, and frame rate measurement and user evaluation are performed.
keywords Environmental Design; Real-time Simulation; Virtual Reality; Consensus-building; Representation of natural elements
series eCAADe
email
last changed 2022/06/07 07:50

_id eaea2005_221
id eaea2005_221
authors Gatermann, Harald
year 2006
title Media work in the educational training of architects to experiences with the postgraduate course “Architecture Media Management”
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 221-237
summary The perception of space, geometry, material and the influence of light is one of the core items of undergraduate courses in architecture. In Bochum we developed and still practise a consequent system of integrating drawing and photography as analytic tools of perception and sketching, descriptive geometry, computer aided design, digital visualisation and animation as synthetic items. The versatile use of digital media in the further studies is of essential significance - especially the synthesis between architectural photography (with all its special features concerning geometrical depicting) and CAD / visualisation / animation. Special emphasis is given to techniques for simulation and immersion such as digital panorama photography, combined with computer-based vr-modelling e.g. vrml as well as using online-cad-modeling and arial photography in processes of citizen participation.
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id ddss2006-hb-203
id DDSS2006-HB-203
authors Gerhard Zimmermann
year 2006
title Multi-Agent Model to Multi-Process Transformation - A housing market case study
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 203-219
summary Simulation is a means to help urban planners and investors to optimize inhabitant satisfaction and return on investment. An example is the optimal match between household preferences and property profiles. The problem is that not enough knowledge exists yet about dynamic user activity models to build reliable and realistic simulators. Therefore, we propose a modeling and software technique that produces simulator prototypes very efficiently for the development, test, and evaluation of many different user activity models, using executable models, code generation, and a domain specific software process. As a specific feature, the model is based on many agents acting independently from each other and that are mapped in several refinement steps into the same number of concurrent processes. The housing example is used as a case study to explain the process and show performance results.
keywords Agent technology, User activity modeling, User activity simulation, Software engineering, Code generation, Software process
series DDSS
last changed 2006/08/29 12:55

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2006_363
id caadria2006_363
authors HSIAO-CHEN YOU, SHANG-CHIA CHIOU, YI-SHIN DENG
year 2006
title DESIGN BY ACTIONS: An Affordance-based Modeling System in Spatial Design
doi https://doi.org/10.52842/conf.caadria.2006.x.p3k
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 363-369
summary From the viewpoint of interaction design, Gibson's affordance concept is interpreted as an emergent action possibility of the physical human-environment-system, which consists of three key components: the user, the environment, and the possible actions. It could help user to perform the suitable action within an artificial environment. This study aims to develop a formal description of affordance in spatial design. Using the formal description as groundwork, an affordance-based modeling system is then proposed to facilitate its further implementation in design and elucidate the new role of users and designers in spatial design. A simplified sink area design is used as an example to illustrate how this affordance-based modeling system works. For users of different conditions, different spatial arrangements in design will affect the performance and users’ behavior as well. This study demonstrates how design by action can be achieved, and then simulates the action sequence of different design solutions to evaluate the system performance.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 2006_262
id 2006_262
authors Ibrahim, Magdy
year 2006
title To BIM or not to BIM, This is NOT the Question - How to Implement BIM Solutions in Large Design Firm Environments
doi https://doi.org/10.52842/conf.ecaade.2006.262
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 262-267
summary Building information modeling is the technology that is converting the workplace in design firms. The initial resistance to applying the concept has faded due to many reasons. Professional architects now see the feasibility and benefits of using the new technology. CAD managers in design firms are working toward the implementation of BIM packages in order to eventually, replace the conventional CAD platforms that are still widely used. However, there are still internal obstacles that slow down the process of the implementation. The change in the project management and the required proper training for the conversion are the two major internal obstacles. The current well organized work flow tailored around the conventional CAD platforms has to be changed in a way suitable for the new technology. The training firms provide for their employees should also be re-structured in a more vertical organization in order to guarantee that everyone understands the new concept and the new work flow. Architectural education usually reflects the needs of the work market. It is very important to understand the needs and identify the directions where the architectural education should go. What do we expect from newly graduated architects? How should we shift the focus toward BIM based CAD in design schools? And, what does it mean to teach modeling versus teaching drafting?
keywords Computer Aided Drafting; Building Information Modeling; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_651078 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002