CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 602

_id ddss2006-hb-203
id DDSS2006-HB-203
authors Gerhard Zimmermann
year 2006
title Multi-Agent Model to Multi-Process Transformation - A housing market case study
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 203-219
summary Simulation is a means to help urban planners and investors to optimize inhabitant satisfaction and return on investment. An example is the optimal match between household preferences and property profiles. The problem is that not enough knowledge exists yet about dynamic user activity models to build reliable and realistic simulators. Therefore, we propose a modeling and software technique that produces simulator prototypes very efficiently for the development, test, and evaluation of many different user activity models, using executable models, code generation, and a domain specific software process. As a specific feature, the model is based on many agents acting independently from each other and that are mapped in several refinement steps into the same number of concurrent processes. The housing example is used as a case study to explain the process and show performance results.
keywords Agent technology, User activity modeling, User activity simulation, Software engineering, Code generation, Software process
series DDSS
last changed 2006/08/29 12:55

_id acadia06_251
id acadia06_251
authors d’Estrée Sterk, Tristan
year 2006
title Shape Change in Responsive Architectural Structures: Current Reasons & Challenge
doi https://doi.org/10.52842/conf.acadia.2006.251
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 251-260
summary Shape control within architectural structures is a natural extension to the practice of engineering and architectural design. The knowledge needed for it’s development builds upon two well understood foundations: 1) the long existing knowledge that building performance and function are intimately connected to the shape of built spaces; and 2) the relatively new idea that embedded computational systems may be employed to control devices in useful and beautiful ways. When combined, each type of knowledge can be used to further architecture and engineering at both theoretical and methodological levels. Structural shape control is of major interest within architecture because it is the primary ingredient needed to produce building envelopes that change shape. Structural shape control also currently represents a major technological and methodological stumbling block for architects, posing many challenges that have theoretical and practical origins. Theoretically, responsive architectural structures demand a re-evaluation of existing notions of space making. Practically, these systems demand a re-evaluation of construction and design methodologies across both engineering and architectural practice.
series ACADIA
type normal paper
email
more admin
last changed 2022/06/07 07:55

_id ddss2006-pb-313
id DDSS2006-PB-313
authors Jakob Beetz, Jos van Leeuwen, and Bauke de Vries
year 2006
title Distributed Collaboration in the Context of the Semantic Web
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 313-323
summary In this paper we are proposing a Multi Agent System (MAS) framework for the facilitation of distributed collaboration in the AEC/FM domain. We are showing how the stack of technologies developed in the Semantic Web community can be put to use for the specific requirements of the building industry. Based on our earlier findings and developments in the area of logic based knowledge representations for the Design and Construction industry, we are outlining how these can form the semantic foundations of internal agent representations and their interconnection using speech acts.
keywords Collaborative design, Multi-agent systems, Semantic Web
series DDSS
last changed 2006/08/29 12:55

_id acadia06_079
id acadia06_079
authors Kumar, Shilpi
year 2006
title Architecture and Industrial Design A Convergent Process for Design
doi https://doi.org/10.52842/conf.acadia.2006.079
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 79-94
summary The use of technology has grown with the way design professions have evolved over time. Changing needs, desires of comfort, and perceptions of the consumers have led to a distinct improvement in the design of both product and architecture. The use of the digital media and emerging technologies has brought a dramatic change to the design process allowing us to view, feel, and mould a virtual object at every stage of design, development, and engineering. Change is often quick and easy since a virtual product does not inherently carry the biases of its physical counterpart. In order to communicate ideas across the team, digital processes are also used to bring together opinions, experiences, and perspectives. These methods encourage decision making based on information rather than prejudice or instinct. Thus, digital exchanges (technology) impact firm strategies at three levels: product, process, and administrative or support activities (Adler 1989).Digital tools for design exchange in Industrial Design (ID) began much earlier than many other professions. The profession of Architecture is also slowly moving to a similar model with digital exchange finding increasing prevalence in drawing, modeling, performance simulation, design collaboration, construction management, and building fabrication. The biggest problem is the disintegrated use of technology in the architectural profession without a strategy toward streamlining the design process from conception to fabrication. In this paper we investigate how the use of technology has evolved in the professions of Industrial Design and Architecture comparatively in their product, process, and support activities. Further, we will present a set of guidelines that will help architects in the convergence of design process, helping in a more efficient work flow with a strategic use of digital technology.
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia06_317
id acadia06_317
authors Lee, E. S., Hong, S., Johnson, Brian R.
year 2006
title Context Aware Paper-Based Review Instrument A Tangible User Interface for Architecture Design Review
doi https://doi.org/10.52842/conf.acadia.2006.317
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 317-327
summary We describe the design and implementation of a prototype computer-supported collaborative work (CSCW) environment for review of architectural construction documents. This environment utilizes a novel plain-paper tangible interface that supports shared activity such as review of construction documents using an “over the shoulder” computational assistant called CAPRI.Despite the increasing use of computers, work in most architecture firms still largely revolves around paper drawings. Architects structure their work around paper instead of digital representations for reasons of legal liability and tradition, as well as technical limitations. While hardcopy is intuitive, dense, and easy to access, it lacks direct connection to the wide range of design knowledge increasingly available in interactive design environments. This lack is felt most acutely during design review processes, when the designer or reviewer is often called upon to consult and consider holistically a variety of supporting (backing) documents, a task which requires focused attention and a good memory, if errors are to be avoided.Our prototype system enables multiple reviewers to interact equally with a paper construction document using a tangible interface to query detail and backing data from a project knowledge base. We believe this will decrease the reviewer’s cognitive load by bringing design data to them in a contextual and timely way. In doing so, we believe errors will be caught sooner and mistakes reduced.
series ACADIA
email
last changed 2022/06/07 07:51

_id 2006_342
id 2006_342
authors Lyon, Eduardo
year 2006
title Component Based Design and Digital Manufacturing - A DfM Model for Curved Surfaces Fabrication using Three Axis CNC Router
doi https://doi.org/10.52842/conf.ecaade.2006.342
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 342-350
summary Through the use of design for manufacturing (DfM) method and looking at the relations between its potential application in architectural production and its implementation using digital manufacturing technologies, we analyze building construction processes and explore, in more detail curved surface fabrication using two dimensional cutting and three dimensional milling processes. Afterwards a DfM model for curved surfaces fabrication using three-axis computer numerical control (CNC) router is proposed. The proposed DfM model relies fundamentally in two supporting factors; the implementation of design heuristics that integrates production knowledge and the availability of some design related to production evaluation metrics. Subsequently, we test and refine the model using structured design experiences. This was accomplished by capturing new design heuristics and detecting useful evaluation metrics for production. In the final part of the research, a refined DfM model was tested in a component design case study. The case study is based on producing a curved surface module on wood for an existing proprietary component based wall system. As a summary, we conceptualize from this top-down development approach to create a design for manufacturing model that integrates design and construction in architecture, based on three possible applications fields: Design processes improvement, building production process improvement, CAD-CAM tools development. Our purpose is to provide better foundational constructs and approaches for integrating design with manufacturing in architecture.
keywords Design for Manufacturing; Design Cognition; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2006_e165b
id sigradi2006_e165b
authors Angulo, Antonieta
year 2006
title Optimization in the Balance between the Production Effort of E-learning Tutorials and their related Learning Outcome
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 122-126
summary This paper provides evidence on the level of media richness that may be cost effective in the development of e-learning tutorials for teaching and learning computer visualization techniques. For such a purpose the author provides an analysis of low-cost / high-impact media rich products, the effort and cost required in their development and the measurement of related learning outcomes. Circa twenty years of R&D of multimedia and hypermedia applications for instruction have demonstrated the benefits of communicating relevant information to learners using engaging media. Based on this evidence, this paper assumes that due to the cognitive style of design students, the instructional packages for learning computer techniques for design visualization that are rich in media content, tend to be more effective. Available visualization technologies make the development of e-learning tutorials feasible and apparently the logical way to implement our instructional packages. However the question in the development of e-learning tutorials becomes a more strategic one when we are called to reach a level of optimization between producing a package with a basic standard, namely; text & still-graphic based tutorials, or a state-of-the-art package that is based on video demonstrations (more than enough?) that can accommodate the students’ learning requirements and also our production costs. The costs include the human resources (instructor, producers, assistants and others) and the material resources (hardware and software, copies, and others) involved in the creation of the e-learning tutorials. The key question is: What is good enough, and what is clearly superfluous? In order to confirm our hypothesis and propose a relevant balance between media richness and learning effectiveness, this paper describes an experiment in the use of two different levels of media richness as used to deliver instructions on the production of computer animations for design visualization. The students recruited for this experiment were fairly familiarized with the use of 3D modeling concepts and software, but had no previous knowledge of the techniques included in the tutorials; in specific; camera animation procedures. The students, separated in two groups, used one of the two methods; then they proceeded to apply their newly acquired skills in the production of an animation without using the help of any external means. The assessment of results was based on the quality of the final product and the students’ performance in the recall of the production procedures. Finally an interview with the students was conducted on their perception of what was accomplished from a metacognitive point of view. The results were processed in order to establish comparisons between the different levels of achievement and the students’ metacognitive assessment of learning. These results have helped us to create a clear set of recommendations for the production of e-learning tutorials and their conditions for implementation. The most beneficial characteristics of the two tested methods in relation to type of information, choice of media, method of information delivery, flexibility of production/editorial tools,! and overall cost of production, will be transferred into the development of a more refined product to be tested at larger scale.
keywords e-learning tutorials; media richness; learning effectiveness; cognitive style; computer visualization techniques
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddss2006-pb-387
id DDSS2006-PB-387
authors Yi-Chia Lee and Yi-Shin Deng
year 2006
title A Design System Integrating TRIZ Method and Case-Based Reasoning Approach
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 387-402
summary Today's industrials are facing numerous product development challenges and pressures as a result of an increasingly competitive market. It creates an enormous need for a constantly growing supply of new ideas and solutions. The computer support used by designers still lacks the ability to use experiential knowledge in a rational way. Therefore, pursuit of designer is utilizing innovative design methods and problem-solving approaches to systematically simplify design problem, and hence accelerate the design process. This paper proposed to integrate TRIZ method into CBR process and aims at exploring the possibility to use TRIZ method as a complement to enhance performance of CBR in product design. Wall lighting design problem is used as example, and an interactive CBR system is not only built to provide designers a computational tool to efficiently retrieve usefulness design cases but also assist designers systematically in finding creative ideas.
keywords TRIZ, Case-based reasoning, Wall light design, Design methods
series DDSS
last changed 2006/08/29 12:55

_id ascaad2006_paper15
id ascaad2006_paper15
authors Anz, Craig and Akel Ismail Kahera
year 2006
title Critical Environmentalism and the Practice of Re-Construction
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This research focuses on the implications and applications of “critical environmentalism” as a quintessential epistemological framework for urban interventions while implementing digital applications that foster collective, round-table approaches to design. Essentially centering the environment (Umwelt) as an encompassing and interconnecting catalyst between multiple disciplines, philosophies, and modes of inquiry and technologies, the framework reciprocally fosters individual and critical identities associated with particular places, belief systems, and their participants as a primary concern. Critical environmentalism promotes a comprehensive, reciprocally unifying epistemological framework that can significantly inform architectural interventions and the tethered use of its technologies in order to foster increased vitality and a certain coinvested attention to the complexities of the greater domain. Grounding the theory in pedagogical practice, this paper documents an approach to urban design and architectural education, implemented as a case-study and design scenario, where divergent perspectives amalgamate into emergent urban configurations, critically rooted in the conditional partialities of place. Digital technologies are incorporated along with analogical methods as tools to integrate multiple perspectives into a single, working plane. Engaging the above framework, the approach fosters a critical (re)construction and on-going, co-vested regeneration of community and the context of place while attempting to dialogically converge multiple urban conditions and modes-of-thought through the co-application of various digital technologies. Critically understanding complex urban situations involves dialogically analyzing, mapping, and modeling a discursive, categorical structure through a common goal and rationale that seeks dialectic synthesis between divergent constructions while forming mutual, catalyzing impetuses between varying facets. In essence, the integration of varying technologies in conjunction, connected to real world scenarios and a guiding epistemic framework cultivates effective cross-pollination of ideas and modes through communicative and participatory interaction. As such it also provides greater ease in crosschecking between a multitude of divergent modes playing upon urban design and community development. Since current digital technologies aid in data collection and the synthesis of information, varying factors can be more easily and collectively identified, analyzed, and then simultaneously used in subsequent design configurations. It inherently fosters the not fully realized potential to collectively overlay or montage complex patterns and thoughts seamlessly and to thus subsequently merge a multitude of corresponding design configurations simultaneously within an ongoing, usable database. As a result, the pedagogical process reveals richly textured sociocultural fabrics and thus produces distinct amplifications in complexity and attentive management of diverse issues, while also generating significant narratives and themes for fostering creative and integrative solutions. As a model for urban community and social development, critical environmentalism is further supported the integrative use of digital technologies as an effective means and management for essential, communicative interchange of knowledge and thus rapprochement between divergent modes-of-thought, promoting critical, productive interaction with others in the (co)constructive processes of our life-space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ascaad2006_paper25
id ascaad2006_paper25
authors Artopoulos, Giorgos; Stanislav Roudavski and Francois Penz
year 2006
title Adaptive Generative Patterns: design and construction of Prague Biennale pavilion
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This paper describes an experimental practice-based research project that considered design process, implementation and construction of a pavilion built to be part of the Performative Space section of the International Biennale of Contemporary Art, Prague 2005. The project was conceptualized as a time-bound performative situation with a parasite-like relationship to its host environment. Its design has emerged through an innovative iterative process that utilized digital simulative and procedural techniques and was formed in response to place-specific behavioral challenges. This paper presents the project as an in-depth case-study of digital methods in design, mass customization and unified methods of production. In particular, it considers the use of Voronoi patterns for production of structural elements providing detail on programming and construction techniques in relationship to design aspirations and practical constraints.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
doi https://doi.org/10.52842/conf.acadia.2006.232
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2006_111
id caadria2006_111
authors DAVID HARRISON, MICHAEL DONN
year 2006
title USING WEB 2.0 TECHNOLOGIES TO PRESERVE DESIGN HISTORY AND IMPROVE COLLABORATION
doi https://doi.org/10.52842/conf.caadria.2006.x.a7m
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 111-117
summary This paper describes ongoing research into how emerging Internet concepts used in conjunction with existing Information Technologies (IT) can improve inter-project communication and understanding. The emphasis of the research is to use technology as an enabler to share personal thoughts and enhance the conversation that takes place within a development team. It stems from the observation that the emphasis of many new Architecture, Engineering and Construction (AEC) technologies is to minimise and diffuse project conversation with highly complex, machine interpretable building information models.Project teams are usually brought together for a relatively short but intense period of time. Following project completion these unique teams are dissolved just as quickly and often are never formed again. As a consequence it is difficult to justify the investment in time and resources required to implement complex IT-based collaboration solutions. A further barrier to adoption is the differential application of IT skills across the AEC industry. Therefore in order for a new technology to gain broad acceptance and be most beneficial it must be applicable to the broadest audience with the minimum investment required from all parties. The primary objective of this research is to preserve the rich design history of a project from conception to completion. Submitted information can be intelligently searched using the meta-data sourced from syndicated data feeds about team members, project timelines, work diaries and email communication. Once indexed users can tag documents and messages in order to provide a further, far richer layer of meta-data to assist in searching, identification of issues and semantic clarification. This strategy of defining AEC semantics through social interaction differs greatly from that of more complex, computer interpretable solutions such as Industry Foundation Classes. Rather than abstracting information to suit a generic yet highly intelligent building model, the emphasis is on preserving the participant’s own thoughts and conversation about decisions and issues in order to create a forum for intelligent conversation as the design evolves.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2006_c056b
id sigradi2006_c056b
authors Díaz Bonilla, Jaime; Marchant, Hernán and Vergara, Mariana
year 2006
title Hacia una lógica de incorporación de los Medios Digitales en la Enseñanza Proyectual [Towards a logical involvement of digital medias in the projective taught]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 142-146
summary This work shows the development of a digital aids incorporation strategy for the improvement of teaching and learning in the areas of architecture, urbanism, design and geography. Its objective is to present a logical construction for the implementation of formative and computer-based support that allows the development and upkeep of cross-disciplinary and collaborative processes.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 2006_506
id 2006_506
authors Fioravanti, Antonio and Rinaldo Rustico
year 2006
title x-House game - A Space for simulating a Collaborative Working Environment in Architecture
doi https://doi.org/10.52842/conf.ecaade.2006.506
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 506-511
summary The research consists of the set up of a game simulating a e Collaborative Working Environment – CWE – in Architectural Design. The use of a game is particularly useful as it makes it possible to simplify the complex terms of the problem and, through the game itself, makes it easier to study knowledge engineering tools, communication protocols and the areas of an ICT implementation of a general model of collaborative design. In the following several characteristics of the game are given (also with reference to other games) such as; participating actors (Wix 1997), the “pieces” (construction components) used, the modular space employed, the PDWs/SDW dialectics, the screenshot of the interface prototype, the score.
keywords Architectural Design; CWE; Game; Representation Model; KBs
series eCAADe
email
last changed 2022/06/07 07:50

_id ddss2006-hb-447
id DDSS2006-HB-447
authors G. Arthaud and J.C. Lombardo
year 2006
title Automatic Semantic Comparison of STEP Product Models - Application to IFC product models
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 447-463
summary This paper introduces an original method to compare IFC models and more generally any STEP models. Unlike common 'diff-like' tools which compare textual files by proceeding line against line, our approach compares actual graphs created from STEP-files. Therefore added, removed, and changed objects can be tracked between two versions of the model. Besides, this standalone tool does not need any heavy database to work so it is fully adapted to design methods of construction projects, where actors are free to modify a local version of their project without any dependence on the database. Moreover it is reusable for other industrial fields thanks to its compatibility with any STEP model. This tool is a part from a more global project which tends to improve accessibility and sustainability of IFC therefore it can be used as a support for VR based design tools.
keywords Industry Foundation Classes (IFC), STEP models, EXPRESS language, Semantic comparison, Design process
series DDSS
last changed 2006/08/29 12:55

_id ijac20064307
id ijac20064307
authors Goldberg, Sergio Araya
year 2006
title Computational Design of Parametric Scripts for Digital Fabrication of Curved Structures
source International Journal of Architectural Computing vol. 4 - no. 3, 99-117
summary This paper explores strategies for building toolchains to design, develop and fabricate architectural designs. It explains how complex curved structures can be constructed from flat standard panels. The hypothesis of this research is that by embedding ruled based procedures addressing generative, variational, iterative, and fabricational logics into early phases of design, both design techniques and digital fabrication methods can merge to solve a recurrent problem in contemporary architectural design, building double curved structures. Furthermore it achieves this using common fabrication methods and standard construction materials. It describes the processes of programming computational tools creating and developing designs to fabricate continuous complex curved structures. I describe this through a series of experiments, using parametric design environments and scripted functions, implementing certain techniques to fabricate these designs using rapid prototyping machines. Comparing different design and fabrication approaches I offer a discussion about universal application of programmed procedures into architectural design.
series journal
last changed 2007/03/04 07:08

_id sigradi2006_e171c
id sigradi2006_e171c
authors González Böhme, Luis Felipe and Vargas Cárdenas, Bernardo
year 2006
title Foundations for a Constraint-Based Floor Plan Layout Support in Participatory Planning of Low-Income Housing
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 283-287
summary We introduce the foundations of a novel approach that deals with constraint-based design methods to supporting participatory planning processes of low-income dwellings. We examine the space allocation problem inside the architectural domain on the basis of graph theory and combinatorics, providing a concise mathematical background for an implementation strategy called FLS (Floor plan Layout Support), which is analyzed here for the first time regarding this particular context of application. The philosophy underlying a design method that is mainly driven by the formulation of distinct constraints suggests to avoid the traditional procedure of first to create a yet not necessarily valid instance of the eventual design solution by directly choosing specific parameter values of its shape, and later on to evaluate its validity by confronting the designed model to a set of applicable constraints. Instead, constraint-based design poses a search procedure that operates in a space of planning-relevant constraint sets. The FLS methodology integrates some few principles of constraint-based automated reasoning with high user interactivity, into a design environment where as much dwellers as planners can collaboratively work in solving spatial organization problems of housing projects. The FLS model of application makes use of a combination of dweller-specified constraints, planning and zoning regulations, and a small library of modular space units. Constraint-based design ! methods are particularly capable of supplying efficient support for the collaborative involvement of dwellers into the architectural programming process of her/his own home. Mainly, because dwellers themselves tend to describe their space need and design intentions as a set of constraints on room quantity, space utilization, circulation system, allocation of available furniture, available budget, construction time, and so forth. The goal is to achieve an integrated tool for finding and modelling topologically valid solutions for floor plan layout alternatives, by combining user-driven interactive procedures with automatic search and generative processes. Thus, several design alternatives can be explored in less time and with less effort than using mainstream procedures of architectural practice. A FLS implementation will constitute one system module of a larger integrated system model called Esther. A FLS tool shall interact with other functional modules, like e.g. the BDS (Building Bulk Design Support), which also uses constraint-based design methods. A preliminary procedural model for the FLS was tested on Chile’s official social housing standards (Chilean Building Code – OGUC. Art. 6.4.1) which are very similar to most Latin American housing programs currently in operation.
keywords constraint-based design; floor plan layout; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_932209 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002