CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id eaea2005_133
id eaea2005_133
authors Weber, Ralf
year 2006
title Urban space and architectural scale - Two examples of empirical research in architectural aesthetics
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 133-149
summary As one of the oldest schools of architecture in Germany, Dresden has a long and continuous tradition in the field of architectural aesthetics and building composition. Architects such as Fritz Schumacher initiated research and teaching in the field in the 1920s, and this was revitalised during the 1950s by Otto Schubert who laid the foundations for a scientific description of the correlation between optics and architectural design, and also worked towards a comprehensive theory of architectural composition. As a result of the architectural ideology of the East German regime, such studies were consigned to near oblivion and the main concern became interior decoration. With the appointment of Professor Ralf Weber, the institute was reestablished in 1994 under its original name, the Institute of Spatial Design (Raumgestaltung). Its new research agenda originated from Weber’s book “On the Aesthetics of Architectural Form - A Psychological Approach to the Structure and the Order of Perceived Architectural Space” (Ashgate 1994). In order to verify some of the hypotheses advanced in the book empirically, members of the institute have been carrying out a number of studies in the areas of oculomotor research and the perceptual foundations of design, and have been addressing issues that would help formulate principles of good architectural form and space applicable to the everyday practice of architectural design. Currently, the Institute of Spatial Design focuses on the further development of the psychological bases of experiencing architecture, as well as on theories of aesthetics and their application in practice. Specifically, attention is paid, on the one hand, to the perception and experience of architecture, i.e. aesthetics, and on the other, to the assemblage of various parts into an overall whole in a building, city or landscape – in other words, architectural composition. These two aspects are naturally inextricably intertwined: the one concerns the reception of architecture, the other, its production. Under these headings, various other areas of interest, such as architectural tectonics, systems of order and proportions, or the issue of scale in architecture, are tackled through dissertations, research projects and seminars. The institute has been cooperating on several studies with the Cognitive & Biological Psychology Unit at the University of Leipzig and the intention is eventually to establish an interdisciplinary research unit for architectural aesthetics.
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id 4559
id 4559
authors Kilian, Axel
year 2006
title Design Exploration through Bidirectional Modeling of Constraints
source Massachusetts Institute of Technology
summary Today digital models for design exploration are not used to their full potential. The research efforts in the past decades have placed geometric design representations firmly at the center of digital design environments. In this thesis it is argued that models for design exploration that bridge different representation aid in the discovery of novel designs. Replacing commonly used analytical, uni-directional models for linking representations, with bidirectional ones, further supports design exploration. The key benefit of bidirectional models is the ability to swap the role of driver and driven in the exploration. The thesis developed around a set of design experiments that tested the integration of bidirectional computational models in domain specific designs. From the experiments three main exploration types emerged. They are: branching explorations for establishing constraints for an undefined design problem; illustrated in the design of a concept car. Circular explorations for the refinement of constraint relationships; illustrated in the design of a chair. Parallel explorations for exercising well-understood constraints; illustrated in a form finding model in architecture. A key contribution of the thesis is the novel use of constraint diagrams developed to construct design explorers for the experiments. The diagrams show the importance of translations between design representations in establishing design drivers from the set of constraints. The incomplete mapping of design features across different representations requires the redescription of the design for each translation. This redescription is a key aspect of exploration and supports design innovation. Finally, this thesis argues that the development of design specific design explorers favors a shift in software design away from monolithic, integrated software environments and towards open software platforms that support user development.
keywords Design, exploration, generative, bidirectional, constraints
series thesis:PhD
type normal paper
email
more http://designexplorer.net/newscreens/phd2006/index.html
last changed 2006/12/07 19:52

_id c7e6
id c7e6
authors Loemker, Thorsten Michael
year 2006
title Digital Tools for Sustainable Revitalization of Buildings - Finding new Utilizations through Destructive and Non-Destructive Floor Space Relocation
source Proceedings of the International Conference on Urban, Architectural and Technical Aspects of the Renewal of the Countryside IV., Bratislava, May 2006
summary In 1845 Edgar Allan Poe wrote the poem “The Raven”, an act full of poetry, love, passion, mourning, melancholia and death. In his essay “The Theory of Composition” which was published in 1846 Poe proved that the poem is based on an accurate mathematical description. Not only in literature are structures present that are based on mathematics. In the work of famous musicians, artists or architects like Bach, Escher or Palladio it is evident that the beauty and clarity of their work as well as its traceability has often been reached through the use of intrinsic mathematic coherences. If suchlike structures could be described within architecture, their mathematical abstraction could supplement “The Theory of Composition” of a building. This research focuses on an approach to describe layout principles of existing buildings in the form of mathematical rules. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a design problem, two exemplary methods will be described to apply new utilizations to existing buildings through the use of these rules.
series other
type normal paper
email
last changed 2008/10/13 14:06

_id ascaad2006_paper7
id ascaad2006_paper7
authors Lömker, Thorsten M.
year 2006
title Designing with Machines: solving architectural layout planning problems by the use of a constraint programming language and scheduling algorithms
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary In 1845 Edgar Allan Poe wrote the poem “The Raven”, an act full of poetry, love, passion, mourning, melancholia and death. In his essay “The Theory of Composition” which was published in 1846 Poe proved that the poem is based on an accurate mathematical description. Not only in literature are structures present that are based on mathematics. In the work of famous musicians, artists or architects like Bach, Escher or Palladio it is evident that the beauty and clarity of their work as well as its traceability has often been reached through the use of intrinsic mathematic coherences. If suchlike structures could be described within architecture, their mathematical abstraction could supplement “The Theory of Composition” of a building. This research focuses on an approach to describe principles in architectural layout planning in the form of mathematical rules that will be executed by the use of a computer. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a design problem, an exemplary method will be described to solve problems in architectural layout planning. Two problem domains will be examined: the design of new buildings, as well as the revitalization of existing buildings. Mathematical and syntactical difficulties that arise from the attempt to extract rules that relate to the process of building design will be pointed out. To avoid conflicts relating to theoretical subtleness a customary approach has been chosen in this work which is adopted from Operations Research. In this approach design is a synonym for planning, which could be described as a systematic and methodical course of action for the analysis and solution of current or future problems. The planning task is defined as an analysis of a problem with the aim to prepare optimal decisions by the use of mathematical methods. The decision problem of a planning task is represented by an optimization model and the application of an efficient algorithm to aid finding one or more solutions to the problem. The basic principle underlying the approach presented herein is the understanding of design in terms of searching for solutions that fulfill specific criteria. This search will be executed by the use of a constraint programming language, which refers to mathematical as well as to integer and mixed integer programming. Examples of architectural layout problems will be presented that can be solved by the use of this programming paradigm. In addition to this, a second programming approach resulting from the domain of resource-allocation has been followed in this research. It will be demonstrated that it is as well possible, to aid architectural layout planning by the use of scheduling algorithms.
series ASCAAD
email
last changed 2007/11/27 08:22

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia06_536
id acadia06_536
authors Sprecher, A., Ahrens, C., Neuman, E.
year 2006
title The Hylomorphic Project
doi https://doi.org/10.52842/conf.acadia.2006.536
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 536-537
summary The Hylomorphic Project is a complex canopy structure, genetically evolved as a vital entity that reacts to changing data streams while configuring the architectural form. For the Hylomorphic Project, Open Source Architecture (OSA) together with structural engineer Prof. Kristina Shea and Marina Gourtovaia of Cambridge University (UK) developed genetic algorithms. Performs in eifForm software, an experimental computer-aided design system for structural synthesis, the algorithm is based in computational environments as a methodology for form finding and material expression that goes beyond the formal articulation of the computational procedure. This procedure simulates a topological condition of natural form evolution that can be consolidated according to innumerable trajectories. Seeking dynamic, flexible and continuous evolution procedures, the software provides the required conditions for this type of the design as it consists of a computational core, which is written in C, a fast low-level compiled language. The modules providing interactive access to the core and the graphical user interface (GUI), a high-level scripting language written in Python, allow for easy customization of the software according to a design task in hand.
series ACADIA
email
last changed 2022/06/07 07:56

_id caadria2006_597
id caadria2006_597
authors CHOR-KHENG LIM, CHING-SHUN TANG, WEI-YEN HSAO, JUNE-HAO HOU, YU-TUNG LIU
year 2006
title NEW MEDIA IN DIGITAL DESIGN PROCESS: Towards a standardize procedure of CAD/CAM fabrication
doi https://doi.org/10.52842/conf.caadria.2006.x.r4i
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 597-599
summary In 1990, due to the traditional architecture design and construction method difficult to build the complicated and non-geometry free-form Fish Structure in Barcelona, architect Frank Gehry started learn from the field of aerospace to utilize CAD/CAM technology in design and manufacture process. He created the free-form fish model in CAD system and exported the digital CAD model data to CAM machine (RP and CNC) to fabricate the design components, and finally assembled on the site. Gehry pioneered in the new digital design process in using CAD/CAM technology or so-called digital fabrication. It becomes an important issue recently as the CAD/CAM technology progressively act as the new digital design media in architectural design and construction process (Ryder et al., 2002; Kolarevic, 2003). Furthermore, in the field of architecture professional, some commercial computer systems had been developed on purpose of standardizes the digital design process in using CAD/CAM fabrication such as Gehry Technologies formed by Gehry Partners; SmartGeometry Group in Europe and Objectile proposed by Bernard Cache. Researchers in the research field like Mark Burry, Larry Sass, Branko Kolarevic, Schodek and others are enthusiastic about the exploration of the role of CAD/CAM fabrication as new design media in design process (Burry, 2002; Schodek et al., 2005; Lee, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2007_060
id ascaad2007_060
authors Gillispie, D. and C. Calderon
year 2007
title A framework towards designing responsive public information systems
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 767-782
summary "Evolving effective responsive systems, and creating a credible interface between the work and the user, requires an awareness of many different types of user, contexts and functions as well as the phenomenological aspects of social and environmental conditions." (Bullivant, 2006). Responsive design and interactive architecture operates at the intersection of Architecture, Arts, Technology, Media Arts, HCI and Interaction Design in a physical context suggesting ways in which the existing physical environments can be augmented and extended adding a greater level of depth, meaning and engagement with the world around us. Through a series of case studies, this paper explores a number of principles which may be applied to the design of responsive environments of which public information systems form part. Divided into three main sections, the paper first explains how responsive environments have addressed the application of public information systems, secondly, through a series of case studies, precedents are highlighted which lead to development of principles for developing designs for responsive environments. The third section discusses and elaborates on these principles which have been developed based upon our own interpretations and grouping of precedents and approaches towards interaction design. This paper contributes towards the field of responsive environments and interactive architecture through an analysis of case studies to infer a framework from which responsive environments may be created and developed.
series ASCAAD
email
last changed 2008/01/21 22:00

_id sigradi2006_e070c
id sigradi2006_e070c
authors Cardoso, Daniel
year 2006
title Controlled Unpredictability: Constraining Stochastic Search as a Form-Finding Method for Architectural Design
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 263-267
summary Provided with a strict set of rules a computer program can perform the role of a simple designer. Taking advantage of a computer’s processing power, it can also provide an unlimited number of variations in the form while following a given set of constraints. This paper delineates a model for interrelating a rule-based system based on purely architectural considerations with non-deterministic computational procedures in order to provide controlled variations and constrained unpredictability. The experimental model consists of a verisimilar architectural problem, the design of a residential tower with a strict program of 200 units of different types in a given site. Following the interpretation of the program, a set of rules is defined by considering architectural concerns such as lighting, dimensions, circulations, etc. These rules are then encoded in a program that generates form in an unsupervised manner by means of a stochastic search algorithm. Once the program generates a design it’s evaluated, and the parameters on the constraints are adjusted in order to produce a new design. This paper presents a description of the architectural problem and of the rule building process, images and descriptions of three different towers produced, and the code for the stochastic-search algorithm used for generating the form. The succesful evolution of the experiments show how in a computation-oriented design process the interpretation of the problem and the rule setting process play a major role in the production of meaningful form, outlining the shifting role of human designers from form-makers to rule-builders in a computation-oriented design endeavour.
keywords Architectural Design; Stochastic; Random; Rule-based systems; Form-generation
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia06_426
id acadia06_426
authors Garber, R., Robertson, N.
year 2006
title The Pleated Cape: From the Mass-Standardization of Levittown to Mass Customization Today
doi https://doi.org/10.52842/conf.acadia.2006.426
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 426-439
summary In the 1950’s, the Levitts put mass-production and the reverse assembly line into use in the building of thousands of single-family houses. However, the lack of variation that made their construction process so successful ultimately produced a mundane suburban landscape of sameness. While there were many attempts to differentiate these Levitt Cape Cods, none matched the ingenuity of their original construction process. The notion of mass-customization has been heavily theorized since the 1990’s, first appearing in the field of management and ultimately finding its way into the field of architecture. Greg Lynn used mass-customization in his design for the Embryological House in which thousands of unique houses could be generated using biological rules of differentiation (Lynn 1999). Other industries have embraced the premise that computer-numerically-controlled technologies allow for the production of variation, though it has not been thoroughly studied in architecture. While digital fabrication has been integral in the realization of several high-profile projects, the notion of large-scale mass-customization in the spec-housing market has yet to become a reality. Through the execution of an addition to a Cape Cod-style house, we examine the intersection between prefabricated standardized panels and digital fabrication to produce a mass-customized approach to housing design. Through illustrations and a detailed description of our design process, we will show how digital fabrication technologies allow for customization of mass produced products.
series ACADIA
email
last changed 2022/06/07 07:50

_id 2006_904
id 2006_904
authors Gurer, Ethem and Gulen Cagdas
year 2006
title A Multi-Level Fusion of Evolutionary Design Processes
doi https://doi.org/10.52842/conf.ecaade.2006.904
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 904-907
summary Evolutionary design methodologies generally aim to present new form-finding processes, where nature-based approaches are used, such as self-organization, genetic algorithms etc. This paper aims to present a new architectural design approach that focuses on integrating these different evolutionary methods in an emergent process. The main goal is to achieve a high-level of integration where lacking qualities of each evolutionary method are completed by the other one in a synergic and especially emergent behavior.
keywords Evolutionary design; morphogenetic; self-organization; emergence
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2006_161
id caadria2006_161
authors HERM HOFMEYER, JAN G.M. KERSTENS
year 2006
title FULL 3D STRUCTURAL ZONING OF SPACE: Using a Geometrically Related Reducer and Matrix Coupling
doi https://doi.org/10.52842/conf.caadria.2006.x.x2d
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 161-168
summary Structural zoning is the recognition of forms in spatial designs. It can be used by a structural designer to develop a structural system. This paper will start with the presentation of a proof that neither user action nor a two-dimensional approach -two existing approaches of zoning- are able to recognize all possibilities for the application of a structural design to a spatial design. Only full three-dimensional structural zoning is considered to be an appropriate instrument to give useful solutions. Two new concepts will be presented to overcome problems for three-dimensional zoning: (1) Geometrically Related Reducers and (2) Matrix Coupling. These concepts are first defined in a general form and thereafter the definitions are condensed into a practically applicable format. Both concepts are demonstrated when finding rectangular zones in spatial designs up to 44 separate spatial entities. They are programmed procedurally using the C++ computer language and are used for a comparison between structural designers and computer performance.
series CAADRIA
email
last changed 2022/06/07 07:50

_id fcb4
id fcb4
authors Loemker, Thorsten Michael
year 2006
title Solving Revitalization-Problems by the Use of a Constraint Programming Language
source IKM 2006, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, July 2006
summary This research focuses on an approach to describe principles in architectural layout planning within the domain of revitalization. With the aid of mathematical rules, which are executed by a computer, solutions to design problems are generated. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a problem, an exemplary method will be described to solve such problems in architectural layout planning. To avoid conflicts relating to theoretical subtleness, a customary approach adopted from Operations Research has been chosen in this work [1]. In this approach, design is a synonym for planning, which could be described as a systematic and methodical course of action for the analysis and solution of current or future problems. The planning task is defined as an analysis of a problem with the aim to prepare optimal decisions by the use of mathematical methods. The decision problem of a planning task is represented by an optimization model and the application of an efficient algorithm in order to aid finding one or more solutions to the problem. The basic principle underlying the approach presented herein is the understanding of design in terms of searching for solutions that fulfill specific criteria. This search is executed by the use of a constraint programming language.
keywords Revitalization, Optimization, Constraint Programming, OPL
series other
type short paper
email
more http://euklid.bauing.uni-weimar.de/ikm2006-cd/data/templates/papers/f26.pdf
last changed 2008/10/13 14:02

_id ddss2006-hb-359
id DDSS2006-HB-359
authors P.P. van Loon and E. Wilms
year 2006
title An Urban Decision Room Based on Mathematical Optimisation - A pilot study supporting complex urban decision questions
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 359-374
summary In general the Urban Decision Room is an interactive computer system based around a digital model for the simulation of complex urban decision questions. Such questions involve various parties with often differing interests. The UDR can assist in finding collective solutions. The UDR is a useful instrument for making the great variety in interests and ideas of the participants manageable. Furthermore, insight is quickly and clearly provided into the results. This enhances the efficiency and effectiveness of processes of urban development. A pilot of the Urban Decision Room based on mathematical optimisation has been made for Schieoevers, an industrial area on the bank of the river Schie to the south of Delft. This pilot is based on a feasibility study for a new urban development in this area which has been carried out by a consultancy firm (Adecs BV) under commission from the municipality of Delft.
keywords Decision support system, Urban planning, Design optimisation
series DDSS
last changed 2006/08/29 12:55

_id 2006_216
id 2006_216
authors Schnabel, Marc Aurel
year 2006
title Architectural Parametric Designing
doi https://doi.org/10.52842/conf.ecaade.2006.216
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 216-221
summary This paper describes a unique coupling of an architectural urban design studio with an in-depth digital media course in order to explore new ways of architectural expression, form finding and communication. It reports on the variables, goals and outcomes of this design studio as well as its integration of digital parametric design that allowed the participants to create innovative urban design language, based on parametric descriptions. The paper portrays the educational approach; the way parametric computer design tools have been introduced, as well as the process and outcomes of the studio. It discusses implications on design education as well as understanding and communicating of complex design tasks that are responsive to a variety of parameters.
keywords Urban design studio; parametric modelling; design exploration
series eCAADe
email
last changed 2022/06/07 07:57

_id ddss2006-pb-387
id DDSS2006-PB-387
authors Yi-Chia Lee and Yi-Shin Deng
year 2006
title A Design System Integrating TRIZ Method and Case-Based Reasoning Approach
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 387-402
summary Today's industrials are facing numerous product development challenges and pressures as a result of an increasingly competitive market. It creates an enormous need for a constantly growing supply of new ideas and solutions. The computer support used by designers still lacks the ability to use experiential knowledge in a rational way. Therefore, pursuit of designer is utilizing innovative design methods and problem-solving approaches to systematically simplify design problem, and hence accelerate the design process. This paper proposed to integrate TRIZ method into CBR process and aims at exploring the possibility to use TRIZ method as a complement to enhance performance of CBR in product design. Wall lighting design problem is used as example, and an interactive CBR system is not only built to provide designers a computational tool to efficiently retrieve usefulness design cases but also assist designers systematically in finding creative ideas.
keywords TRIZ, Case-based reasoning, Wall light design, Design methods
series DDSS
last changed 2006/08/29 12:55

_id ascaad2006_paper8
id ascaad2006_paper8
authors Abdullah, Sajid; Ramesh Marasini and Munir Ahmad
year 2006
title An Analysis of the Applications of Rapid Prototyping in Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Rapid prototyping (RP) techniques are widely used within the design/manufacturing industry and are well established in manufacturing industry. These digital techniques offer quick and accurate prototypes with relatively low cost when we require exact likeness to a particular scale and detail. 3D modeling of buildings on CAD-systems in the AEC sector is now becoming more popular and becoming widely used practice as the higher efficiency of working with computers is being recognized. However the building of scaled physical representations is still performed manually, which generally requires a high amount of time. Complex post-modernist building forms are more faithfully and easily represented in a solid visualization form, than they could be using traditional model making methods. Using RP within the engineering community has given the users the possibility to communicate and visualize designs with greater ease with the clients and capture any error within the CAD design at an early stage of the project or product lifecycle. In this paper, the application of RP in architecture is reviewed and the possibilities of modeling architectural models are explored. A methodology of developing rapid prototypes with 3D CAD models using methods of solid freeform manufacturing in particular Fused Deposition Modeling (FDM) is presented and compared against traditional model making methods. An economical analysis is presented and discussed using a case study and the potential of applying RP techniques to architectural models is discussed.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e048c
id sigradi2006_e048c
authors Beck, Mateus Paulo; Brener, Rafael; Giustina, Marcelo and Turkienicz, Benamy
year 2006
title Light and Form in Design – A Computational Approach
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 254-257
summary Shape perception is strongly influenced by the reciprocal relation between light and form. Computational applications can increase the number of design alternatives taking into account possible variations in the relation between light and form. The aim of this study is to discuss a pedagogical experience carried out with 5th semester architectural students, based on a series of exercises prior to the term project. The exercises were concerned with the relation between light and form from an aesthetical point of view and should be understood as examples for the use of computers as tools to creatively accelerate the process of design and learning. The paper is divided in five parts. The first one describes the conceptual background for the exercises, a descriptive method for the identification of light effects in architectural objects based on ideas of shape emergence. The exercises’ methodology is explained in the second part, referring to the use of computational applications in 3-dimensional modeling, material and light simulation. The methodology includes different phases: –creation of bi-dimensional compositions according to symmetry operations; –creation of a minimal living space assigning functions to spaces originated from the former composition; –analysis of the impact of light on the form and spaces created; –alteration of form and materials creating new light effects considering the functions related to the spaces. The exercises alternate work in computational environment in two and three dimensions with the use of mockups, lamps and photography. In the third part the results –student’s design steps– are described. In the fourth part the results are analyzed and some conclusions are outlined in the fifth and last part. The use of emergent forms combined with computational tools has proved to be an effective way to achieve an accelerated understanding of the impact of light on forms as demonstrated by the evolution of the students work during the term and by their final results concerning the term project.
keywords Architectural Design; Lighting; Design Simulation; Virtual Environment
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2006_601
id caadria2006_601
authors BINSU CHIANG, MAO-LIN CHIU
year 2006
title PRIVATE/UN-PRIVATE SPACE: Scenario-based Digital Design for Enhancing User Awareness
doi https://doi.org/10.52842/conf.caadria.2006.x.s8b
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 601-603
summary Context awareness is important for human senses of places as well as human computer interaction. The aim of this research paper is focusing on controlling the user's privacy in a smart space which is adaptive to different users for enhancing the user's awareness in his diary life. In Environmental Psychology, the definition of privacy is that an individual has the control of deciding what information of himself is released to others, and under how he interact with others. (Westin 1970) And privacy is categorized as the linguistic privacy and visual privacy. (Sundstorm 1986). Solutions for privacy control: Plan Layout, Vision Boundary, Access Control and Architecture Metaphor - the transmission of information is not ascertainable for every single user. Although information are shown in public, but information is implied by cues and symbols. Only a certain user or a group of users have access to the full context of information. The methodology is to form an analytic framework to study the relationship between information, user and activities by using the computational supports derived from KitchenSense, ConceptNet, Python, 3d Studio Max and Flash; and to record patterns built up by users' behaviour and actions. Furthermore, the scenario-based simulation can envision the real world conditions by adding interfaces for enhancing user awareness.
series CAADRIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_625010 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002