CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 543

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id 2006_798
id 2006_798
authors Potamianos, Iakovos and Wassim Jabi
year 2006
title Interactive Parametric Design and the Role of Light in Byzantine Churches
doi https://doi.org/10.52842/conf.ecaade.2006.798
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 798-803
summary Byzantine church design depended heavily on natural light which was used for evocative purposes. The orientation of the main axis of the church, the form of the apse and the location and size of its windows are affected by the need for sunlight to shine at the altar on a desired time and for a certain duration. Until now the process of accurately taking account of all the above parameters has been rather difficult and tedious. This paper illustrates the use of digital tools both for the analysis of the geometry of existing apse designs and the parametric generation of new ones. A sophisticated computer program was used to calculate sun angles during the Byzantine period incorporating calendar changes. In addition, Bentley System’s Generative Components software was used to construct a parametric model that allows the user to define the geometric conditions and parameters of the apse. The software would then iterate through multiple solutions to satisfy the desired conditions as well as allow the user to change the conditions at will. The tools were used to discover the geometry of the apse of the Byzantine church of Hagia Sophia in Constantinople and to analyze the apse of the Post-Byzantine church of the Xeropotamou monastery on Mount Athos in Greece. The paper concludes with a discussion of the role of parametric tools for architectural analysis and the generation of possible design solutions.
keywords Parametric Design; Generative Components; Light; Byzantine Churches
series eCAADe
email
last changed 2022/06/07 08:00

_id 2006_320
id 2006_320
authors Ahmad, Sumbul and Scott Chase
year 2006
title Grammar Representations to Facilitate Style Innovation - An Example From Mobile Phone Design
doi https://doi.org/10.52842/conf.ecaade.2006.320
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 320-323
summary Previous research in generative design has suggested that shape grammar transformations could be used for developing new design styles by the systematic modification of grammars that encode existing styles. Our research explores how such grammar transformations can be facilitated to be responsive to changes in design style requirements. For this it is important to consider the structure and organization of rules, as well as the description of the styles of designs generated by a grammar. Using an example of mobile phone design, we outline the development of a flexible grammar structure that is conducive to transformations. The grammar is augmented with a style description scheme based on the concept of semantic differential to map the style characteristics of grammar components. These measures could be significant for driving purposeful grammar transformations for style adaptation and innovation.
keywords Design grammars; style; product design; generative design
series eCAADe
email
last changed 2022/06/07 07:54

_id 8b29
id 8b29
authors Chaszar, A. (ed.), Burry, M., Eliassen, T., Garofalo, D., Glymph, J., Hesselgren, L., Jonkhans, N., Kienzl, N., Kloft, H., Maher, A., Mueller, V., Palmer, A., Reuss, S., Schuler, M., Schwitter, C., Sharples, C., Sharples, W., Shea, K., Stoller, P., Takemori, T., Woodger, N.
year 2006
title Blurring the Lines: Computer-Aided-Design and -Manufacturing in Architecture
source Wiley-Academy, London 224 pp. Architecture in Practice series
summary The first few years of the 21st century have seen a revolution in the ways that we think about designing and making buildings. In no other area is this more apparent than in the interface of computer-aided design (CAD) and computer-aided manufacture (CAM). The potential blurring or assimilation of these two systems holds the still elusive but golden promise of a direct, smooth transference of design data into large-scale production facilities in which components are directly cut, modelled and moulded. How far off are we from seeing the widespread adoption of this technology? What is the potential for CAD/CAM beyond tailor-made forms? In the future, what is the possibility of complex, large-scale forms being run out in mass-customised buildings?
keywords associative geometry, auralization, CNC, collaborative design, generative design, parametric design, simulation, visualization
series book
type normal paper
email
last changed 2006/06/12 23:35

_id 4559
id 4559
authors Kilian, Axel
year 2006
title Design Exploration through Bidirectional Modeling of Constraints
source Massachusetts Institute of Technology
summary Today digital models for design exploration are not used to their full potential. The research efforts in the past decades have placed geometric design representations firmly at the center of digital design environments. In this thesis it is argued that models for design exploration that bridge different representation aid in the discovery of novel designs. Replacing commonly used analytical, uni-directional models for linking representations, with bidirectional ones, further supports design exploration. The key benefit of bidirectional models is the ability to swap the role of driver and driven in the exploration. The thesis developed around a set of design experiments that tested the integration of bidirectional computational models in domain specific designs. From the experiments three main exploration types emerged. They are: branching explorations for establishing constraints for an undefined design problem; illustrated in the design of a concept car. Circular explorations for the refinement of constraint relationships; illustrated in the design of a chair. Parallel explorations for exercising well-understood constraints; illustrated in a form finding model in architecture. A key contribution of the thesis is the novel use of constraint diagrams developed to construct design explorers for the experiments. The diagrams show the importance of translations between design representations in establishing design drivers from the set of constraints. The incomplete mapping of design features across different representations requires the redescription of the design for each translation. This redescription is a key aspect of exploration and supports design innovation. Finally, this thesis argues that the development of design specific design explorers favors a shift in software design away from monolithic, integrated software environments and towards open software platforms that support user development.
keywords Design, exploration, generative, bidirectional, constraints
series thesis:PhD
type normal paper
email
more http://designexplorer.net/newscreens/phd2006/index.html
last changed 2006/12/07 19:52

_id 047b
id 047b
authors Woodbury, R, Williamson, S, Beesley, P
year 2006
title Parametric Modeling as a Design Representation in Architecture: a process account
source Third CDEN/RCCI International Conference on Education, Innovation, and Practice in Engineering Design, Toronto, ON, Canada, 24-26 July 2006. Canadian Design Engineering Network. Published on CD.
summary Disciplines outside of engineering, for instance, architecture, are adopting parametric modelling as a design representation. This paper reports on three aspects of the adoption process, which is largely being conducted through multi-day workshops outside of formal university course settings. Fist, the structure and process of such workshops may be a model for interdisciplinary learning and university-industry liaison. Second, students learning parametric modelling must master skill different from that required for non-parametric representation. Third, the parametric modelling strategies being developed in architecture may have both similarities and differences to those used in engineering.
keywords Parametric Modelling Design Representation Generative Components
series other
type normal paper
email
more http://www.cden2006.utoronto.ca/data/10092.pdf
last changed 2006/10/29 14:52

_id sigradi2006_e081d
id sigradi2006_e081d
authors Hecker, Douglas
year 2006
title Dry-In House: A Mass Customized Affordable House for New Orleans
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 359-362
summary Dry-in house is a mass customized affordable housing system proposed for the reconstruction of New Orleans. The dry-in House gets the owner back to their home site quickly while providing the infrastructure an occupant needs (shelter, water, electricity). The owner is supplied with an inhabitable shell that is customizable before it is fabricated as well as onsite as the project is “fitted out” over time. The key concept is to allow families to participate in the design of their customized homes and to get people back to their home sites as quickly as possible and to give them the opportunity to finish and further customize their home over time. The project addresses inefficiencies and redundancies in emergency housing currently provided by FEMA. Primarily the dry-in House as its name implies provides a timely dried-in space which doubles as a customized infrastructure for the reconstruction of homes and neighborhoods. The project is designed to meet the $59,000 life cycle cost of the presently provided temporary housing, the notorious “FEMA Trailer”. However, the Dry-in House provides a solution that: a) Is permanent rather than temporary. The house will be finished and further customized over time rather than disposed of. b) Reoccupies the owner’s home site rather than a “FEMA ghetto” keeping the community together and functioning. c) Is mass customized rather than mass-standardized allowing the owner to have input on the design of their home. The design is a “starter home” rather than an inflexible and over-determined solution. This also has the benefit of giving variation to the reconstruction of New Orleans as opposed to the monotony of mass-production. d) Allows the owners to further customize their home over time with additional exterior finishes and the subdivision and fit out of the interior. By utilizing plate truss technology and associated parametric modeling software, highly customized trusses can be engineered and fabricated at no additional cost as compared to off-the-shelf trusses. This mass customization technology is employed to create the building section of each individual’s house. The truss is not used in its typical manner, spanning over the house; rather, it is extruded in section to form the house itself (roof, wall, and floor). Dry-in House exploits this building technology to quickly rebuild communities in a sensible manner. It allows for an increased speed of design and construction and most importantly it involves the owner in this process. The process has other benefits like reducing waste not only because it replaces the FEMA trailer which is expensive and disposable but also since the components are prefabricated there is more precision and also quality. The Dry-in House allows the owner-designer to “draw” the section of their new home providing them with a unique design and a sense of belonging and security. The design of the section of the house also provides them with spatial configurations customized relative to site conditions, program etc... Because of the narrow lot configuration of New Orleans, the design maximizes the roof as a source for natural ventilation and light for the interior of the house. In addition, the house is one room deep providing cross ventilation in all rooms minimizing reliance on artificial mechanical systems. The timely and efficient off site fabrication of building sections facilitate larger concentrations of volunteers on site at one time, thereby promoting a greater collective spirit among the community and volunteer workforce, a therapeutic event for the community as they participate in the rebuilding of their homes and city. With individualized building sections arriving on site, the construction process is imagined to be more akin to a barn raising, making possible the drying in of multiple houses in less than one day.
keywords mass customization; digital manufacturing; affordable housing
series SIGRADI
email
last changed 2016/03/10 09:53

_id ddss2006-hb-85
id DDSS2006-HB-85
authors J.A.M. Borsboom-van Beurden, R.J.A. van Lammeren, T. Hoogerwerf, and A.A. Bouwman
year 2006
title Linking Land Use Modelling and 3D Visualisation - A mission impossible?
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 85-101
summary Additional to the traditional land use maps 3D visualisation could provide valuable information for applications in the field of spatial planning, related to ecological and agricultural policy issues. Maps of future land use do not always reveal the appearance of the physical environment (the perceived landscape) as a result of land use changes. This means that 3D visualisations might shed light on other aspects of changed land use, such as expected differences in height or densities of new volume objects, or the compatibility of these changes with particular characteristics of the landscape or urban built environment. The Land Use Scanner model was applied for the Netherlands Environmental Assessment Agency's 'Sustainability Outlook' to explore land use changes, followed by GIS analyses to asses both the development of nature areas and the degree of urbanisation within protected national landscapes. Since it was felt that 3D visualisation could complement the resulting land use maps, the land use model output was coupled to 3D visualisation software in two different ways: 1) through Studio Max software in combination with iconic representation of the concerned land use types and 2) through 3D components of GIS software. However, the use of these techniques on a national scale level for the generation of semi-realistic 3D animations raised a number of conceptual and technical problems. These could be partly ascribed to the particular format and of the Land Use Scanner output. This paper discusses the methods and techniques which have been used to couple the output of the land use model to 3D software, the results of both approaches, and possible solutions for these problems.
keywords Land use models, 3D visualisation, Policy-making
series DDSS
last changed 2006/08/29 12:55

_id cf2011_p163
id cf2011_p163
authors Park, Hyoung-June
year 2011
title Mass-Customization in the Design of 4,000 Bus Stops
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 265-278.
summary In Hawaii, ‚"TheBus‚" has been a main transportation system since 1971. Considering the high cost of living in Hawaii and the absence of a rail system, the use of ‚"TheBus‚" has been an instrumental vein of the city life in Honolulu with rhythmical pauses at about 4,000 bus stops in Honolulu. However, existing undifferentiated bus stops are developed from a cost effective mass production system so that they have been problematic for satisfying specific needs from various site conditions. In this research, an integrated computational method of mass-customization for designing 4,000 bus stops is introduced. According to various site conditions, the design of each bus stop is customized. Unlike the mass‚Äêproduced bus stops commonly seen in cities today, the proposed computational method in this paper produces bus stop design outcomes that fit into the physical characteristics of the location in which they are installed. Mass-customization allows for the creation and production of unique or similar buildings and building components, differentiated through digitally‚Äêcontrolled variation (Kolarevic, 2003). The employment of a computational mass‚Äêcustomization in architectural design extends the boundary of design solutions to the satisfaction of multi-objective requirements and unlimited freedom to search alternative solutions (Duarte, 2001; Caldas, 2006). The computational method developed in this paper consists of 1) definition of a prototype, 2) parametric variation, 3) manual deformation, and 4) simulation based deformation. The definition of a prototype is the development of a basic design to be transformed for satisfying various conditions given from a site. In this paper, the bus stop prototype is developed from the analysis of more than 300 bus stops and the categorization of the existing bus stops according to their physical conditions, contextual conditions, climatic conditions, and existing amenities. Based upon the outcome of the analysis, the design variables of a bus stop prototype are defined. Those design variables then guide the basic physical parameters for changing the physical configuration of the prototype according to a given site. From this, many possible design outcomes are generated as instances for further developments. The process of manual deformation is where the designer employs its intuition to develop the selected parametric variation. The designer is compelled to think about the possible implication derived from formal variation. This optional process allows every design decision to have a creative solution from an individual designer with an incidental quality in aesthetics, but substantiated functional quality. Finally the deformation of the selection is guided and controlled by the influence of sun direction/ exposure to the selection. The simulation based deformation starts with the movement of the sun as the trigger for generating the variations of the bus stop prototype. The implementation of the computational method was made within the combination of MEL (Maya Enbedded Language), autodesk MAYA and Ecotect environment.
keywords mass-customization, parametric variation, simulation based deformation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2006_868
id 2006_868
authors Becker, Mirco
year 2006
title Branches and Bifurcations - Building a framework for modeling with isosurfaces in Generative Components
doi https://doi.org/10.52842/conf.ecaade.2006.868
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 868-873
summary An isosurface is a three-dimensional representation of a constant value of a field function within a given volume. They are normally used in computer graphics to visualize data in fluid dynamics, medical imaging, geophysics, and meteorology. The advantage of isosurfaces is that they can represent all sorts of topologies. That makes them a perfect tool for modeling, branching, forking, and bifurcating objects with smooth transitions. As they work of a field function, the surface is implicit, the polygonization an approximation. This is a good base for coupling performance with precision. The task was to define a set of handles to change and model an isosurface. It had to happen through the modeling of the field function in a way that is rather intuitive but without giving up the precision one is used to have from standard NURBS/BREP modeling. The paper shows how a modeling framework for isosurfaces is implemented as a plug-in for Bentley Systems Generative Components allowing an intuitive way of exploring design variations. The implementation is illustrated with a proof of concept showing a sketch design.
keywords Isosurface; Polygonization; Scalar field; Marching Cube; Generative Components
series eCAADe
email
last changed 2022/06/07 07:54

_id eaea2005_49
id eaea2005_49
authors Breen, Jack
year 2006
title The Model Image
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 49-59
summary Designing is a specialized, unpredictable development process which is to a large extent visually generative and reflective – and, as such, predominantly pre-linguistic. Architectural designers make creative use of various imaging techniques, in order to elucidate design concepts that would otherwise remain ‘figments of the imagination’. By projecting their ideas, into readable information, these may be shared, communicated, evaluated and developed further. In this context, various types of models play an important role on different levels of design driven enquiry and representation. This contribution explores the dynamic conditions and potentials of models in architecture, in particular as a prerequisite for visual exploration and communication.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id 2006_684
id 2006_684
authors De Bodt, Kathleen
year 2006
title SoundScapes & Architectural Spaces - Spatial sound research in digital architectural design
doi https://doi.org/10.52842/conf.ecaade.2006.684
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 684-689
summary The paper presents ongoing research focusing on the development of digital tools and methodologies for spatial design based on non-Euclidean geometries. It addresses the way sound can be used both conceptually and acoustically in the early stages of the design process, examining digital architectural design and modeling based on three-dimensional sound visualization and the acoustical analysis and evaluation of complex curved surface geometry. The paper describes SoundMatrix, the first part of a digital design tool created by using Max/Msp/Jitter, to assist in the preliminary design of building façades in small-scale urban environments, specifically studying the possibilities of curvature to decrease sound reflection between opposing street façades. Examples from a workshop with the SoundMatrix application illustrate the real-time 3D authoring and sound spatialisation processing currently implemented in the tool.
keywords graphical programming; performance-based design; generative design
series eCAADe
email
last changed 2022/06/07 07:55

_id a126
id a126
authors Finucane E, Derix C and Coates P
year 2006
title Evolving Urban Structures using Computational Optimisation
source Proceedings of the Generative Arts conference, Milan, 2006
summary This paper investigates the use of computer analogies for naturally inspired optimisation techniques as an aid to developing the site layout and massing for the new World Trade Centre development in Pristina Kosovo, which is being designed and developed by 4M Group architectural company, in conjunction with the Advanced Modelling Group Aedas. The development of a genetic algorithm will incorporate various techniques, that have been developed in the field of multi-objective optimisation, to create three dimensional massing models, and site layout solutions which partially fulfil the Prisina brief requirements, which are taken from specifications created by 4M Group. Genetic algorithms are based on natural evolutionary principles which are explained in this paper. It will incorporate Pareto concepts to manage the optimisation of the various objective functions. For example, these will include volume and position of units, which will ensure that the different and sometime conflicting needs of the site are balanced throughout the optimisation. This type of problem is often known as an NP-complete (non-determinate polynomial time) problem. This will provide architects and planners with a number of Pareto optimised site massing solutions as an aid to the design process. An initial investigation into the specifics of the Pristina site requirements, will be followed by an investigation into the the genetic algorithm which is created in Visual Basic for Applications (VBA) linked with AutoCAD as the graphical output of the code. The embryology (development) of the various solutions from the genetic information incorporates an ‘ant’ pheromone trail model, which simulates the action of ants during food foraging, as a tool for initial route planning within the site. Diffusion and cellular automata are used during the development of the solution to construct the massing for the site.
keywords urban planning, evolutionary algorithms, pareto optimization, Lindenmayer systems, ant-colony optimization, cellular automaton
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 18:33

_id ijac20064307
id ijac20064307
authors Goldberg, Sergio Araya
year 2006
title Computational Design of Parametric Scripts for Digital Fabrication of Curved Structures
source International Journal of Architectural Computing vol. 4 - no. 3, 99-117
summary This paper explores strategies for building toolchains to design, develop and fabricate architectural designs. It explains how complex curved structures can be constructed from flat standard panels. The hypothesis of this research is that by embedding ruled based procedures addressing generative, variational, iterative, and fabricational logics into early phases of design, both design techniques and digital fabrication methods can merge to solve a recurrent problem in contemporary architectural design, building double curved structures. Furthermore it achieves this using common fabrication methods and standard construction materials. It describes the processes of programming computational tools creating and developing designs to fabricate continuous complex curved structures. I describe this through a series of experiments, using parametric design environments and scripted functions, implementing certain techniques to fabricate these designs using rapid prototyping machines. Comparing different design and fabrication approaches I offer a discussion about universal application of programmed procedures into architectural design.
series journal
last changed 2007/03/04 07:08

_id 2006_884
id 2006_884
authors Grasl, Thomas; Christoph Falkner and Christian Kühn
year 2006
title Easy access classes for three-dimensional generative design - Using a collaborative environment for e-learning
doi https://doi.org/10.52842/conf.ecaade.2006.884
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 884-889
summary Part of an EU funded project to develop a “VIrtual campus for virtual space design Provided for European Architects (VIPA)” was the implementation of a practical run at the Vienna University of Technology. Therein we attempted to evaluate some of the concepts and technologies which were intended for the e-learning platform. After briefly introducing the didactical background, this paper concentrates on the technological setup accompanying the course. Especially the use of Croquet as an immersive three-dimensional environment to teach generative design is highlighted; its strengths and weaknesses in supporting our envisioned didactical concept are analysed. The practical run and its evaluation by the participating students are described, as well as some of the student work performed during and after the course. Concluding remarks elaborating on problems encountered in the software setup and in our didactical concept, followed by the description of future work to amend the above mentioned pitfalls, will mark the end.
keywords collaborative environment; croquet; generative design; learning platform, virtual space design
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia07_040
id acadia07_040
authors Hyde, Rory
year 2007
title Punching Above Your Weight: Digital Design Methods and Organisational Change in Small Practice
doi https://doi.org/10.52842/conf.acadia.2007.040
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 40-47
summary Expanding bodies of knowledge imply expanding teams to manage this knowledge. Paradoxically, it can be shown that in situations of complexity—which increasingly characterise the production of architecture generally—the small practice or small team could be at an advantage. This is due to the increasingly digital nature of the work undertaken and artefacts produced by practices, enabling production processes to be augmented with digital toolsets and for tight project delivery networks to be forged with other collaborators and consultants (Frazer 2006). Furthermore, as Christensen argues, being small may also be desirable, as innovations are less likely to be developed by large, established companies (Christensen 1997). By working smarter, and managing the complexity of design and construction, not only can the small practice “punch above its weight” and compete with larger practices, this research suggests it is a more appropriate model for practice in the digital age. This paper demonstrates this through the implementation of emerging technologies and strategies including generative and parametric design, digital fabrication, and digital construction. These strategies have been employed on a number of built and un-built case-study projects in a unique collaboration between RMIT University’s SIAL lab and the award-winning design practice BKK Architects.
series ACADIA
email
last changed 2022/06/07 07:50

_id 2006_874
id 2006_874
authors Lee, Ming-xian and Ji-Hyun Lee
year 2006
title Form, Style and Function - A Constraint-Based Generative System for Apartment Façade Design
doi https://doi.org/10.52842/conf.ecaade.2006.874
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 874-883
summary This paper describes the development of a constraint-based generative system (FSF system) to support the design of middle and high-rise apartment façades from architectural plans. Floor plan and façade designs are heavily interrelated, and, sometimes, the plan constrains the façade design during the design process. This relationship lends itself to apply constraint-based systems and we have designed the system to connect intelligently between apartment plan and façade. In our system, we define constraints into three categories: structural form, architectural style and function. We use genetic algorithm to generate plausible alternatives quickly and augmented by a constraint-based system, façades can be generated and modified much more easily in terms of real-time visual feedback for checking violence of the constraints and of dealing with updates smoothly through intelligent connecting plans to façades.
keywords Generative system; Plan-to-façade; Constraint-based system; Intelligent CAD; Style description
series eCAADe
email
last changed 2022/06/07 07:51

_id ddss2006-pb-235
id DDSS2006-PB-235
authors Luca Caneparo, Francesco Guerra, and Elena Masala
year 2006
title UrbanLab - Generative platform for urban and regional design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 235-251
summary UrbanLab is a computer system supporting urban and regional design. The papers outlines two leading aspects of this large research project, aimed respectively to make explicit the dynamic of the design in its time and geographic dimensions, and to interactively represent the interplay of some, explicitly, recognised factors, for instance the role of a multitude of different (local) actors in the design process. UrbanLab has been applied to several projects at different scales. We consider the applications to dynamically and interactively generating models of an Alpine valley. The modelling in the spatial and temporal dimensions provided us with the elements to study the evolution over the next twenty years.
keywords Generative modelling, Participatory design, DSS, GIS, Software agent, Urban design, Regional design
series DDSS
last changed 2006/08/29 12:55

_id caadria2006_169
id caadria2006_169
authors RABEE M. REFFAT
year 2006
title A COMPUTATIONAL SYSTEM FOR ENRICHING DISCOVERY IN ARCHITECTURAL DESIGN
doi https://doi.org/10.52842/conf.caadria.2006.x.a3l
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 169-177
summary This paper presents a computational system for enriching design discovery in the external 2D representation of architectural plans. Enriching discovery is achieved through an interpretative search process that involves emergent findings. The developed computational system employs a twofold discovery process, generative phase and an interpretative or explorative phase. In the generation phase the system allows designers to depict an initial building design in the form of 2D plans as a set of lines. The system recognizes possible components of the initial design by generating different forms of bounded shapes that are both explicit and implicit using the Hamiltonian circuit approach. In the interpretation phase the discovery process using the quest mechanism is invoked by selecting a geometrical semantic identified in the recognized shapes to generate possible alternative interpretations of the complete representation of initial design. This plays an important role in enriching discovery in the architectural design of buildings and provides a set of new moves and directions for the designer to pursue.
series CAADRIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_482108 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002