CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 176

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2006_000
id sigradi2006_000
authors Soza, Pedro (ed.)
year 2006
title SiGradi2006
source Proceedings of the 10th Iberoamerican Congress of Digital Graphics Graphics / ISBN 956-19-0539-6] Santiago de Chile (Chile) 21-23 november 2006, 494 p.
summary Forty years of development have passed since digital technologies were used in the service of design for the first time but many of the early questions about its usefulness are still open. The beginning [early] period, known as call “analytical”, was founded in a rational and reductionist understanding of the phenomenon, including those related to creative processes. The target was rational optimization for possible solutions around a given problem. Later on, the graphic technologies development meant a huge jump in issues concerning 3D representation of designed objects. A great interest in visualization and “the virtual” then arose: almost everything and any shape, could be modelled and visualized, obtaining representations of space, time, light and matter as never seen before in any field related to imaging. Today these useful technologies are amplified due to the connectivity of the web, stimulating the birth of applications and models which seek to optimize the production processes. However, before of its impact, there is still a question waiting to be answered since the first days of CAD: has all this technology actually allowed the development of better design? The answer doesn’t seem to be obvious, when above all we see ourselves facing the context of a global world that becomes more and more complex. Digital technology is developing very rapidly. Despite this, an equally accelerated improvement in design products is not so clear. The reason for this could be the fact that our practices as designers have not been updated and improved at the same speed as technology. This next Sigradi is about debating how our organizational practices are changing with the digital phenomenon and how the users can positively trigger the potential that lies in these technologies. The hypothesis that underpins this question is the consideration that digital technologies are a unique platform to achieve the necessary integration of knowledge that must feed any contemporary design process. We think that the integration of multidisciplinary knowledge, memories, values and imagination must become the starting point in the production of better design.
series SIGRADI
email
last changed 2016/03/10 10:01

_id 2006_532
id 2006_532
authors Abdelhameed, Wael
year 2006
title How Does the Digital Environment Change What Architects Do in the Initial Phases of the Design Process?
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 532-539
doi https://doi.org/10.52842/conf.ecaade.2006.532
summary Some researchers have tried to answer the question: do we need to think differently while designing in terms of the digital environment? This methodological question leads to another question: what is the range of this difference, if there is one? This research investigates the range of changes in how architects conduct and develop the initial design within the digital environment. The role offered by the digital environment in visual design thinking during conceptual designing through shaping: concepts, forms, and design methods, is identified and explored.
keywords Conceptual designing; architects; digital environment; design process; visual design thinking
series eCAADe
email
last changed 2022/06/07 07:54

_id 2006_032
id 2006_032
authors Al-Attili, Aghlab and Leonidas Koutsoumpos
year 2006
title Ethics of Virtuality… Virtuality of Ethics
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 32-39
doi https://doi.org/10.52842/conf.ecaade.2006.032
summary This paper addresses issues pertaining to architecture, virtuality and ethics by establishing an interactive, non-linear virtual environment as a tool for investigation into the virtuality of ethics and ethics of virtuality, in the context of architecture. Starting from the assertion that ‘Virtual Environment (VE) is a metaphor of Real Environment (RE)’, we test the proposition that suggests ‘Ethics of RE can be tested and simulated in VE’. Challenging the notion that sees people reacting to VE in the same way as they interact with their surroundings in RE, we propose that since ethics are engulfing architecture they are also present and simulated in VE. Virtual architecture has elements of ethics that we refer to as ‘Ethics of Virtuality’. In this context, VE ethics seem to lose the ubiquity that is present in RE. In order to examine this hypothesis, we created a VE that corresponds to the RE of the PhD students’ offices, within the Department of Architecture, School of Arts, Culture, and Environment in the University of Edinburgh. The real life users of these offices were subjected to this VE. A qualitative method of research followed to probe their experience, focusing on issues related to ethics. Subjects were asked to give a personal accounts of their experience which gave us an insight into how they think. The compiled list of results and their evaluation showed startling possibilities, further establishing VE as an arena for investigating issues pertaining to both architecture and ethics.
keywords Virtual Environments; Ethics; Place; Representation; Trust
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia06_150
id acadia06_150
authors Boza, Luis Eduardo
year 2006
title (Un) Intended Discoveries Crafting the Design Process
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 150-157
doi https://doi.org/10.52842/conf.acadia.2006.150
summary Computer Numeric Controlled (CNC) fabrication machineries are changing the way we design and build. These technologies have increased productivity through greater efficiencies and have helped to create new forms of practice, including increased specializations and broader collaborative approaches. (Kieran Timberlake 2003: 31). However, some argue that these technologies can have a de-humanizing effect, stripping the human touch away from the production of objects and redistributing the associated skills to machines. (Dormer 1997: 103). The (Digital) Craft studio explored the notions of technology and craft to understand how and when designers should exploit the tools employed (both the hand and the machine) during the design and production processes.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e070c
id sigradi2006_e070c
authors Cardoso, Daniel
year 2006
title Controlled Unpredictability: Constraining Stochastic Search as a Form-Finding Method for Architectural Design
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 263-267
summary Provided with a strict set of rules a computer program can perform the role of a simple designer. Taking advantage of a computer’s processing power, it can also provide an unlimited number of variations in the form while following a given set of constraints. This paper delineates a model for interrelating a rule-based system based on purely architectural considerations with non-deterministic computational procedures in order to provide controlled variations and constrained unpredictability. The experimental model consists of a verisimilar architectural problem, the design of a residential tower with a strict program of 200 units of different types in a given site. Following the interpretation of the program, a set of rules is defined by considering architectural concerns such as lighting, dimensions, circulations, etc. These rules are then encoded in a program that generates form in an unsupervised manner by means of a stochastic search algorithm. Once the program generates a design it’s evaluated, and the parameters on the constraints are adjusted in order to produce a new design. This paper presents a description of the architectural problem and of the rule building process, images and descriptions of three different towers produced, and the code for the stochastic-search algorithm used for generating the form. The succesful evolution of the experiments show how in a computation-oriented design process the interpretation of the problem and the rule setting process play a major role in the production of meaningful form, outlining the shifting role of human designers from form-makers to rule-builders in a computation-oriented design endeavour.
keywords Architectural Design; Stochastic; Random; Rule-based systems; Form-generation
series SIGRADI
email
last changed 2016/03/10 09:48

_id 8b29
id 8b29
authors Chaszar, A. (ed.), Burry, M., Eliassen, T., Garofalo, D., Glymph, J., Hesselgren, L., Jonkhans, N., Kienzl, N., Kloft, H., Maher, A., Mueller, V., Palmer, A., Reuss, S., Schuler, M., Schwitter, C., Sharples, C., Sharples, W., Shea, K., Stoller, P., Takemori, T., Woodger, N.
year 2006
title Blurring the Lines: Computer-Aided-Design and -Manufacturing in Architecture
source Wiley-Academy, London 224 pp. Architecture in Practice series
summary The first few years of the 21st century have seen a revolution in the ways that we think about designing and making buildings. In no other area is this more apparent than in the interface of computer-aided design (CAD) and computer-aided manufacture (CAM). The potential blurring or assimilation of these two systems holds the still elusive but golden promise of a direct, smooth transference of design data into large-scale production facilities in which components are directly cut, modelled and moulded. How far off are we from seeing the widespread adoption of this technology? What is the potential for CAD/CAM beyond tailor-made forms? In the future, what is the possibility of complex, large-scale forms being run out in mass-customised buildings?
keywords associative geometry, auralization, CNC, collaborative design, generative design, parametric design, simulation, visualization
series book
type normal paper
email
last changed 2006/06/12 23:35

_id caadria2006_565
id caadria2006_565
authors CHEN CHIEN TUNG
year 2006
title DESIGN ON SITE: Portable, Measurable, Adjustable Design Media
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 565-567
doi https://doi.org/10.52842/conf.caadria.2006.x.b7f
summary Space designers usually look for information on site before proceeding design. They image any possibilities of design, while they are on site. Restricted to traditional design media, if they want to develop their ideas further, they have to go back to desks. This kind of design process can capture only part of information of the site. Why not do some developments directly when designers are on the site? That is the starting point of this paper. The whole situation of site is very complicated, so it is very difficult discussing all the possibilities. In order to understand how to design on site, reducing the variations is needed. Tsai and Chang (2005) proposed a prototype about design on site, which focuses on land forming. So I chose interior as the site to reduce the variation and have more controllable factors. Still there are many factors effecting design on site, scale is very unique and very important factor of them. Beginners are difficult to really feel how long it is on the plan drawing, and even most advanced VR equipment still can’t fully present the rich information on the site. To experience the site though body, the main idea is how to propose a portable device that can support space designer to do design on site directly, with intuitional body movement and precise scale, and get feedback immediately.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ddss2006-hb-487
id DDSS2006-HB-487
authors Chien-Tung Chen and Teng-Wen Chang
year 2006
title 1:1 Spatially Augmented Reality Design Environment
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 487-499
summary With the development of ubiquitous computing (Weiser, 1991), what will become of the traditional media such as pen and sketches, especially in the design education environment? Or what will they be transformed into? In this research, we focus on the interior design process with a particular type of media-1:1 spatially augmented reality design environment (SARDE). In this research, we tried to implement SARDE and have a scenario experiment to check how designers interact with such design media. Furthermore, through this research, we have come to know more about how designers use design media to represent their design dream.
keywords Design & Decision Support Systems, Spatially Augmented Reality, Architecture Education, and Computer Visualization
series DDSS
last changed 2006/08/29 12:55

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_778
id 2006_778
authors Dritsas, Stylianos; Renos Charitou and Lars Hesselgren
year 2006
title Computational Methods on Tall Buildings - The Bishopsgate Tower
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 778-785
doi https://doi.org/10.52842/conf.ecaade.2006.778
summary This paper summarizes the ongoing research done on The Bishopsgate Tower in the City of London using parametric design methodologies. The process is indicative of how computational methods will develop in the future and help designers find solutions for increasingly complex spaces.
keywords Tall Buildings; Computational Geometry; Building Information Management; Façade Optimization
series eCAADe
email
last changed 2022/06/07 07:55

_id eaea2005_103
id eaea2005_103
authors Giró, Héctor
year 2006
title Visualising emotions - Defining urban space through shared networks
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 103-111
summary Networks and new media and communication tools, in combination with other media like film, imaging, text and sound, make richer ways of expression possible and at the same time offer attractive possibilities to investigate and express designing. Architects, or their clients, in consequence become increasingly able to explore, develop and communicate their ideas in a better way. At the same time, most people find it difficult to describe their demands and needs in advance: it seems they react much better on something that is already there, a finished work. How then can designers get a better idea of people’s needs and wishes? In other words, how could designers –among others- get a better match between expectations and results? Consequently, what could be the significance of ‘new media’ within this process?
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 32b4
id 32b4
authors Heylighen, Ann; Casaer, Mathias; Neuckermans, Herman
year 2006
title UNAWARE: SUPPORTING TACIT DESIGN KNOWLEDGE EXCHANGE
source International Journal of Web-Based Communities, Volume 2, Number 1, Jan 2006, pp.31-44
summary DYNAMO (Dynamic Architectural Memory Online) is an interactive platform to share ideas, knowledge and insights in the form of concrete building projects among designers in different contexts and at different levels of expertise. Interaction with various user groups revealed two major thresholds: submitting project material to the platform takes time, effort, and specific skills; in addition, designers tend to sense a psychological threshold to share their ideas and insights with others. In response to this ‘free-ridership’, the paper proposes to conceive DYNAMO as an associative network of projects, and develops ideas about how the links in this network can be determined and updated by exploiting insights implicitly available in project documentation and user (inter)actions. This should allow DYNAMO to learn from the insights of all designers using the platform, active contributors and ‘free-riders’ alike, without any awareness on their side and to apply these insights to continuously enhance its performance.
keywords architectural design; self-organisation; usage logs; connectionism
series other
type normal paper
email
last changed 2006/02/01 14:28

_id caadria2006_363
id caadria2006_363
authors HSIAO-CHEN YOU, SHANG-CHIA CHIOU, YI-SHIN DENG
year 2006
title DESIGN BY ACTIONS: An Affordance-based Modeling System in Spatial Design
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 363-369
doi https://doi.org/10.52842/conf.caadria.2006.x.p3k
summary From the viewpoint of interaction design, Gibson's affordance concept is interpreted as an emergent action possibility of the physical human-environment-system, which consists of three key components: the user, the environment, and the possible actions. It could help user to perform the suitable action within an artificial environment. This study aims to develop a formal description of affordance in spatial design. Using the formal description as groundwork, an affordance-based modeling system is then proposed to facilitate its further implementation in design and elucidate the new role of users and designers in spatial design. A simplified sink area design is used as an example to illustrate how this affordance-based modeling system works. For users of different conditions, different spatial arrangements in design will affect the performance and users’ behavior as well. This study demonstrates how design by action can be achieved, and then simulates the action sequence of different design solutions to evaluate the system performance.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20064102
id ijac20064102
authors Lee, Jackie Chia-Hsun; Hu, Yuchang; Selker, Ted
year 2006
title iSphere:A free-hand 3D modeling interface
source International Journal of Architectural Computing vol. 4 - no. 1, 19-31
summary Making 3D models should be an easy and intuitive task like free-hand sketching. This paper presents iSphere, a 24 degree of freedom 3D input device. iSphere is a dodecahedron embedded with 12 capacitive sensors for pulling-out and pressing-in manipulation on 12 control points of 3D geometries. It exhibits a conceptual 3D modeling approach for saving mental loads of low-level commands. Using analog inputs of 3D manipulation, designers are able to have high-level modeling concepts like pushing or pulling 3D surfaces. Our experiment shows that iSphere saved steps in the selection of control points in the review of menus and leading to a clearer focus on what to build instead of how to build it. Novices saved significant time learning 3D manipulation by using iSphere to making conceptual models. However, one tradeoff of the iSphere is its lack of fidelity in its analog input mechanism.
keywords 3D Input Device; Proximity Sensing; Parametric Modeling; Human-Computer Interaction
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00003
last changed 2007/03/04 07:08

_id acadia06_064
id acadia06_064
authors Luhan, Gregory A.
year 2006
title Synthetic Making
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 64-67
doi https://doi.org/10.52842/conf.acadia.2006.064
summary Various approaches of virtual and physical modeling have led to a synthetic form of making that is plastic and scalable in nature. This shift from traditional forms of representing and generating architecture now offers a better possibility of full-scale construction and fabrication processes and links transparently to industry. Architects are beginning to dynamically inform the visioning processes of assemblies and design through a range of precise subassemblies. Further to this end, the synthetic techniques and materials are opening up avenues for designers to investigate a range of fibers and fabrics that radically transform light and color renditions, and texture. Investigations in the realm of traditional materials such as stone, wood, and concrete continue to evolve, as do their associated methods of making. As a result of synthetic technologies, architects today have the possibility to work along side industry engineers and professionals to design castings, moldings, patterns, and tools that challenge not only the architectural work of art, but industrial and product design as well. This cultural shift from physical space to virtual space back to physical space and the combination of hand-, digital-, and robotic-making offers a unique juxtaposition of the built artifact to its manufacturing that challenges both spatial conventions and also the levels of precision and tolerance by which buildings are assembled. Traditional forms of documentation for example result typically in discrepancies between the drawn and the actualized which are now challenged by the level of precision and tolerance at the virtual level. It is within this context that leading-edge architects and designers operate today. Yet, how the profession and the academy respond to these opportunities remains an open line of inquiry and addressing these concerns opens up the rich potential enabled through synthetic making.
series ACADIA
email
last changed 2022/06/07 07:59

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p003
id cf2011_p003
authors Ng, Edward; Ren Chao
year 2011
title Sustainable Planning with a Synergetic Collation of Thermal and Dynamic Characteristics of Urban Climate using Map Based Computational Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 367-382.
summary Since 2006, half of the world’s population lives in cities. In the age of climate change, designing for quality environmental living conditions and sustainability is a topical concern. However, on the one hand, designers and city planners operate with their three dimensional city morphological data such as building shapes and volumes, forms and their spacings, and functional attributes and definition signatures. On the other hand, urban climatologists operate with their numbers and equations, quantities and signals, and normals and anomalies. Traditionally the two camps do not meet. It is a challenge to develop design tools that they can work together. Map based information system based on computational geographic information system (GIS) that is properly structured and represented offers a common language, so to speak, for the two professional groups to work together. Urban climatic map is a spatial and graphical tool with information embedded in defined layers that are collated so that planners and urban climatologists can dialogue over design issues. With various planning and meteorological data coded in defined grid resolutions onto the GIS map system, data can be synergized and collated for various understandings. This papers explains the formulation of Hong Kong’s GIS based Urban Climatic Map as an example of how the map works in practice. Using the map, zonal and district based planning decisions can be made by planners and urban climatologists that lead to new designs and policy changes.
keywords sustainable development, urban planning, urban thermal, urban dynamics, computer tools
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2006_700
id 2006_700
authors Salman, Huda; Richard Laing and Anna Conniff
year 2006
title CAAD Visualization Techniques Mediate the Conceptual Design Process as a Thinking Tool - Reflection on action study
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 700-708
doi https://doi.org/10.52842/conf.ecaade.2006.700
summary This research explores the practical findings of CAAD visualization techniques for the analysis and understanding of early phases of the conceptual design. Our aim is to allow subjects to focus on their design tasks rather than worry about the creation of effective concept presentation. The possibility of a complete computer mediated conceptualization process should be acknowledged as a visual thinking tool. This research will have implications for both how the designer’s visual thinking process can be interfaced with CAAD and, perhaps more importantly, may provide new assumptions for the designer’s visual cognitive research to explore in order to provide the foundation for more useful tools for designers .
keywords architectural design; conceptual iteration; visual thinking
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_625821 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002