CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 621

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
doi https://doi.org/10.52842/conf.acadia.2006.232
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2006_832
id 2006_832
authors El-Khoury, Nada; De Paoli Giovanni and Dorta Tomás
year 2006
title Digital Reconstruction as a means of understanding a building’s history - Case studies of a multilayer prototype
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 832-839
doi https://doi.org/10.52842/conf.ecaade.2006.832
summary The experiments presented in this paper are situated at the crossroads of two fields: the understanding and communication of history to students and the field of Information and Communication Technologies (ICT). More specifically, we aim to propose to students, ways of transferring information about lifestyles and techniques linked to the construction methods used in the past and which are present in ancient sites. It is not merely a question of proposing experiments for managing an inventory of knowledge such as that summarized in historical texts, but rather a means for understanding it: How do we communicate the invisible? How do we make visible what we cannot see but that we can imagine lies beneath the ruins of ancient sites? Lastly, how do we propose new approaches in the transferring of these historic skills and lifestyles? Such are the questions that the students’ experiments will attempt to answer while using computers as cognitive tools. In this case, these cognitive tools are designated as “multilayer prototypes” which aim to develop a dynamic virtual history space through augmented reality.
keywords ICT; Byblos; multilayer prototype; augmented reality; education research
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2006_paper23
id ascaad2006_paper23
authors Ali, Rasha
year 2006
title Islamic Architecture and Digital Databases
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Epigraphy in Islamic architecture represented an indispensable element in its conceptual design and structure. Our research investigates this unique role, which epigraphy played in Islamic architecture as a tool singularizing this architecture and the sensuality it inspires inside a building while bestowing on it its particular identity. This how SADEPIG came to being: it is a virtual database regrouping all the information about the monumental epigraphy which date from the Sa‘dian period in Morocco (1527- 1660). The digital corpus of monumental Sa‘dian inscriptions provides also buildings plans, virtual tour within the monument, construction details, information about the identity of patron and builders.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
doi https://doi.org/10.52842/conf.acadia.2006.230
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id ascaad2006_paper10
id ascaad2006_paper10
authors Babsail, Mohammad and Andy Dong
year 2006
title Sensor-based Aware Environment
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This paper provides an overview of the requirements for a computational model of a Sensor-Based Aware Environment (SBAE) that integrates sensor technologies with the Building Information Modelling (BIM) in order to sense ambient and physical aspects of the built environment. Wireless sensors sense ambient data of a built environment, process, and communicate these data through an ad-hoc wireless network. The BIM, on the other hand, is based on International Foundation Classes (IFCs) and contains data about the physical infrastructure (i.e. Walls, Windows, doors) and abstract entities (i.e. Spaces, Relationships) and relationships between those entities. Therefore, the proposed computational model could sense real time data that are related to the as-built information model allowing for holistic building state information.
series ASCAAD
last changed 2007/04/08 19:47

_id 2006_664
id 2006_664
authors Balakrishnan, Bimal; Loukas N. Kalisperis and S. Shyam Sundar
year 2006
title Capturing Affect in Architectural Visualization - A Case for integrating 3-dimensional visualization and psychophysiology
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 664-669
doi https://doi.org/10.52842/conf.ecaade.2006.664
summary Envisioning architectural experience afforded by a building under design has been difficult due to two reasons. One is simulating the space in full scale, eliminating the need to take a mental leap commonly required of abstract smaller scale representations. Second challenge is in fully capturing the affective experience, which is often subtle in nature. This paper suggests that 3-dimensional visualization - particularly immersive virtual reality can overcome the first challenge. In addition, psychophysiological measures such as facial electromyography (EMG) and electrodermal activity (EDA) can be used to capture the affective component of the architectural experience. We suggest that by taking advantage of these technologies together, one can better simulate and empirically understand the nature of architectural experience.
keywords Architectural visualization; virtual reality; psychophysiology; electrodermal activity (EDA); facial electromyography (EMG)
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac20064401
id ijac20064401
authors Boeykens, Stefan; Neuckermans, Herman
year 2006
title Improving Design Workflow in Architectural Design Applications
source International Journal of Architectural Computing vol. 4 - no. 4, pp. 1-19
summary In architectural design software, there is a trend to integrate the whole design process in a single application. Design, 3D modeling, drafting, but also design evaluation and presentation are bundled inside the application. This is especially apparent in applications that adhere to the concept of Building Information Modeling. When we look at the functionality in these applications, however, a disruption of the design process can be encountered, preventing the designer to step back and forth throughout the different design phases or scale levels. Three current architectural design applications are briefly positioned and compared and potential improvements to the workflow are introduced.
series journal
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000004/art00002
last changed 2007/03/04 07:08

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
doi https://doi.org/10.52842/conf.acadia.2006.148
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_c133d
id sigradi2006_c133d
authors Castañé, Dora
year 2006
title Rosario, Views on the Integral Revitalization of a Cultural Heritage
source SIGraDi 2006 - [10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006
summary This work shows the study of the methods and techniques for the development of a virtual vision VRML 3D included in an "Digitally-integrated knowledge base" with interactive interphases of a significantly revitalized fragment of a central area of the city of Rosario, Province of Santa Fé, Argentina, that includes an emblematic heritage for the Argentineans: the National Monument to the Flag. Digital models that partly allow the development of a hypothesis of integration between the digitized information and information technology - new digital proximity - to the effects of being able to investigate the generation of multimedia database that includes three-dimensional and dynamic models of the mentioned type, in this case, urban, architectonic, and cultural heritage. Different views and research on heritage have been developing. Nevertheless, the use of these new 3D non-immersive technologies and inter-phases are opening a new field of vision and understanding of the subject.
keywords Urban-architectural planning; heritage; virtual reality
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:48

_id acadia06_302
id acadia06_302
authors Clarke, Cory
year 2006
title Synthetic Dissemination
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 302-303
doi https://doi.org/10.52842/conf.acadia.2006.302
summary Synthetic Dissemination, within the context of architecture and information culture, offers seemingly contradictory possibilities. The ends of dissemination and synthesis are at odds. The purpose of the former being diffusion and distribution, and the byproduct of the latter being quite the opposite - namely the combination and association of information into a coherent whole. The conjoining of dissemination and synthesis implies these two contradictory operations can operate in a symbiotic or complementary manner.Relative to architecture and design the combination of dissemination and synthesis is potentially profound. The marriage of synthesis and dissemination presents a possibility that the method of distributing information could be, or have embedded within it, a synthetic process. In the simplest sense synthetic dissemination implies that the tools for design and synthesis could be the same as tools for documentation and dissemination; or more specifically that the fluidity and creativity of design software could be coupled with the practicality and meticulousness of building information modelers (BIM). More abstractly synthetic dissemination implies that the means of encoding and distributing information could propagate design. Architects have readily adopted digital tools for encoding and presenting their ideas, but have not fully recognized how the informational structures of these applications promote or hinder design. Developments in the information architecture of D software, such as the shift from geometrically based data structures to procedurally based directed action graphs (DAG) as seen in Maya and DMax, have opened up innovative methods of architectural design. Each new change in the information architecture of design software ushers in new approaches to design, raising the question - how does the production and storage of information affect design? More broadly, how can the tools of dissemination facilitate synthesis?
series ACADIA
email
last changed 2022/06/07 07:56

_id caadria2006_111
id caadria2006_111
authors DAVID HARRISON, MICHAEL DONN
year 2006
title USING WEB 2.0 TECHNOLOGIES TO PRESERVE DESIGN HISTORY AND IMPROVE COLLABORATION
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 111-117
doi https://doi.org/10.52842/conf.caadria.2006.x.a7m
summary This paper describes ongoing research into how emerging Internet concepts used in conjunction with existing Information Technologies (IT) can improve inter-project communication and understanding. The emphasis of the research is to use technology as an enabler to share personal thoughts and enhance the conversation that takes place within a development team. It stems from the observation that the emphasis of many new Architecture, Engineering and Construction (AEC) technologies is to minimise and diffuse project conversation with highly complex, machine interpretable building information models.Project teams are usually brought together for a relatively short but intense period of time. Following project completion these unique teams are dissolved just as quickly and often are never formed again. As a consequence it is difficult to justify the investment in time and resources required to implement complex IT-based collaboration solutions. A further barrier to adoption is the differential application of IT skills across the AEC industry. Therefore in order for a new technology to gain broad acceptance and be most beneficial it must be applicable to the broadest audience with the minimum investment required from all parties. The primary objective of this research is to preserve the rich design history of a project from conception to completion. Submitted information can be intelligently searched using the meta-data sourced from syndicated data feeds about team members, project timelines, work diaries and email communication. Once indexed users can tag documents and messages in order to provide a further, far richer layer of meta-data to assist in searching, identification of issues and semantic clarification. This strategy of defining AEC semantics through social interaction differs greatly from that of more complex, computer interpretable solutions such as Industry Foundation Classes. Rather than abstracting information to suit a generic yet highly intelligent building model, the emphasis is on preserving the participant’s own thoughts and conversation about decisions and issues in order to create a forum for intelligent conversation as the design evolves.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac20064202
id ijac20064202
authors de Vries, Bauke; Buma, Sjoerd; Jessurun, Joran
year 2006
title An Intuitive Interface for Building Management and Planning
source International Journal of Architectural Computing vol. 4 - no. 2, 17-26
summary Building management and planning professionals utilize database systems for administrative support, but these systems are inadequate for conveying architectural plans. In this article we describe the so-called Virtual Maquette that was developed at the Eindhoven University of Technology for the board of the University. The Virtual Maquette consists of a vertical display for 3D view and information of building stock, and an interactive horizontal display for manipulation of view and information. Interaction is implemented using infrared tracking of devices that are positioned on the desktop with the projected plan view. Through this interface the states of the buildings can be inspected at different periods in history and in the future. The support of multiple devices in a single environment is a technical challenge, but it provides a new interaction method for non-technical persons.
series journal
last changed 2007/03/04 07:08

_id bsct_dervishi
id bsct_dervishi
authors Dervishi, Sokol
year 2006
title Computational Derivation of Incident Irradiance on Building Facades based on Measured Global Horizontal Irradiance Data
source Vienna University of Technology; Building Science & Technology
summary Reliable simulation of buildings' energy performance requires, amongst other things, the availability of detailed information on the magnitudes of incident solar radiation on building facades. However, the availability of the measured data concerning the incident solar radiation on vertical surfaces is restricted to only few locations. In addition, concurrent measurements of horizontal global and horizontal diffuse (or direct normal) irradiance data are likewise available only for a limited number of locations. In contrast, global horizontal irradiance data is available for many locations. This research demonstrates how to computationally derive incident irradiance values on vertical (or otherwise inclined) building surfaces from measured globalirradiance values. Given this context, three methods are considered to compute incident vertical irradiance values based on measured global horizontal irradiance data. Vertical solar irradiance measurements are described. Then, the computationally derived values are compared withcorresponding measurements. The results are evaluated based on their correlation coefficients and relative error. Finally, the application of horizontal-to- vertical irradiance mapping is demonstrated using the case of an office building at Vienna University of Technology.
keywords Horizontal and vertical irradiance, measurement and simulation, energy performance
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:30

_id acadia06_540
id acadia06_540
authors Diewald, J., Frederick, M.
year 2006
title Building Information Modeling: Interactive Versioning Experiment
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 540-541
doi https://doi.org/10.52842/conf.acadia.2006.540
summary Interactive Versioning, is the first experiment of an ongoing investigation into the conceptual role of parametric modeling in the design process. In this case, the form is defined by constrained floor-plate relationships. Originally testing methods using numerical values exported to excel, we obtained undesirable results and shifted our focus to the creation of an interactive model; restoring the direct influence of user input. The result is a 10-floor structure that allows the user to tweak point locations along the slab perimeters that in turn have global effect on the overall geometry of the architectural body. We are using four point definition types: reference above, interactive reference, reference below, and independent value. Interactive reference points use referential constraints defined as x and y distances from the global origin, which change on account of user inputs. Reference above points pull (x,y) values from an interactive point above. Reference below points pull (x,y) values from interactive points below. Independent points are unaffected by changes in any of the other points but may also be tweaked to adjust a form. On any given level, there are 2 interactive reference points, 2 reference above points, 2 reference below points, and 4 independent points. Additionally, 2 length constraints link interactive points with reference above points on the same level. This allows for changes to affect the entire structure rather than only the floor plates immediately above and below a given change. The addition of constraints to the floor outlines will yield a variety of formal results and offer the possibility to further control the output.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2006_234
id 2006_234
authors Donath, Dirk and Christian Tonn
year 2006
title Complex design strategies using building information models - Evaluation and interpretation of boundary conditions, supported by computer software
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 234-243
doi https://doi.org/10.52842/conf.ecaade.2006.234
summary The choice of a chord and its execution should be regarded as a must and not left to arbitrary wish or superficial speculation. (Johannes Itten, 1961) The paper describes a modular concept for the IT-support of planning practice using BIM (Building Information Modelling) and a parameterized building model. The platform used is the modularized software concept for architectural planning in existing built contexts (prototype software FREAK). The current progress in the development of a reasoned support of planning tasks is described in this paper in more detail. The system consists of a series of software prototypes which are linked to the BIM, utilize the specific data within and demonstrate the value of a consistent and extendable CAD-model. The “Colored Architecture” software prototype is one such design-support module of the software platform and enables the designer to experiment with the parameters colour, light and materials in architectural space. This module supports experimentation, assessment and realization of colours and materials in the architectural design process on a new quality. For instance, the integration of “live radiosity” light simulation allows a qualified and interactive assessment and evaluation of colours and materials in near-real lighting conditions. The paper also details further software prototypes, modules and concepts including building surveying and the design of self-supporting domed structures.
keywords Design; Parameterized Building Information Modelling; Plausibility; Planning Support; Colour, Material and Light Design
series eCAADe
email
last changed 2022/06/07 07:55

_id 2006_778
id 2006_778
authors Dritsas, Stylianos; Renos Charitou and Lars Hesselgren
year 2006
title Computational Methods on Tall Buildings - The Bishopsgate Tower
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 778-785
doi https://doi.org/10.52842/conf.ecaade.2006.778
summary This paper summarizes the ongoing research done on The Bishopsgate Tower in the City of London using parametric design methodologies. The process is indicative of how computational methods will develop in the future and help designers find solutions for increasingly complex spaces.
keywords Tall Buildings; Computational Geometry; Building Information Management; Façade Optimization
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac20064107
id ijac20064107
authors Elger, Dietrich; Russell, Peter
year 2006
title Crisis? What crisis? Approaching information space: New dimensions in the field of architecture
source International Journal of Architectural Computing vol. 4 - no. 1, 107-121
summary The paper describes the current situation concerning career opportunities in the field of architecture in developed western countries. Several aspects that are almost universal mark this situation. Firstly, there are too many architects chasing traditional work in competition with other engineers. Secondly, the needs of the building industry have changed over the past years so that the skills that architects are able to offer are not necessarily those that are sought. Lastly, the constant specialisation of work has continued unabated. Architects, as generalists, have seen their areas of expertise be usurped from neighbouring fields. The situation is not lost, so long as architects are able to recognise what is desired from the point of view of the client and what is desired from the point of view of the architect. For educators, it must be clear that the real potential architects possess is their encompassing knowledge of the building information. Architectural Information Management is a necessary skill to be taught alongside the more traditional architectural skills. A brief outlook as to how this might come about is detailed in the paper. The authors propose didactic steps to achieve this. Primarily, the education of computer supported planning should not simply end with a series of lectures or seminars, but culminate in integrated Design Studios (which include Design-Build scenarios).
keywords Architectural Information Management; Computer Supported Design Studios; CSCW
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00008
last changed 2007/03/04 07:08

_id 2006_058
id 2006_058
authors Fukuda, Tomohiro; Kazuhiro Sakata; Wookhyun Yeo and Atsuko Kaga
year 2006
title Development and Evaluation of a Close-range View Representation Method of Natural Elements in a Real-time Simulation for Environmental Design - Shadow, Grass, and Water Surface
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 58-65
doi https://doi.org/10.52842/conf.ecaade.2006.058
summary In this research, a close-range view expression method used in real-time simulation based on virtual reality technology is developed for environmental design evaluation. After describing the purpose and accuracy of representation, the problem of natural element representation in a close-range view, which has not been developed yet, is clarified. Next, the close-range view expression method of shadows, grass, and water surface is developed. Furthermore, the developed method is applied to a number of actual environmental design projects, and frame rate measurement and user evaluation are performed.
keywords Environmental Design; Real-time Simulation; Virtual Reality; Consensus-building; Representation of natural elements
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia06_426
id acadia06_426
authors Garber, R., Robertson, N.
year 2006
title The Pleated Cape: From the Mass-Standardization of Levittown to Mass Customization Today
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 426-439
doi https://doi.org/10.52842/conf.acadia.2006.426
summary In the 1950’s, the Levitts put mass-production and the reverse assembly line into use in the building of thousands of single-family houses. However, the lack of variation that made their construction process so successful ultimately produced a mundane suburban landscape of sameness. While there were many attempts to differentiate these Levitt Cape Cods, none matched the ingenuity of their original construction process. The notion of mass-customization has been heavily theorized since the 1990’s, first appearing in the field of management and ultimately finding its way into the field of architecture. Greg Lynn used mass-customization in his design for the Embryological House in which thousands of unique houses could be generated using biological rules of differentiation (Lynn 1999). Other industries have embraced the premise that computer-numerically-controlled technologies allow for the production of variation, though it has not been thoroughly studied in architecture. While digital fabrication has been integral in the realization of several high-profile projects, the notion of large-scale mass-customization in the spec-housing market has yet to become a reality. Through the execution of an addition to a Cape Cod-style house, we examine the intersection between prefabricated standardized panels and digital fabrication to produce a mass-customized approach to housing design. Through illustrations and a detailed description of our design process, we will show how digital fabrication technologies allow for customization of mass produced products.
series ACADIA
email
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_517500 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002