CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 33

_id ascaad2006_paper8
id ascaad2006_paper8
authors Abdullah, Sajid; Ramesh Marasini and Munir Ahmad
year 2006
title An Analysis of the Applications of Rapid Prototyping in Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Rapid prototyping (RP) techniques are widely used within the design/manufacturing industry and are well established in manufacturing industry. These digital techniques offer quick and accurate prototypes with relatively low cost when we require exact likeness to a particular scale and detail. 3D modeling of buildings on CAD-systems in the AEC sector is now becoming more popular and becoming widely used practice as the higher efficiency of working with computers is being recognized. However the building of scaled physical representations is still performed manually, which generally requires a high amount of time. Complex post-modernist building forms are more faithfully and easily represented in a solid visualization form, than they could be using traditional model making methods. Using RP within the engineering community has given the users the possibility to communicate and visualize designs with greater ease with the clients and capture any error within the CAD design at an early stage of the project or product lifecycle. In this paper, the application of RP in architecture is reviewed and the possibilities of modeling architectural models are explored. A methodology of developing rapid prototypes with 3D CAD models using methods of solid freeform manufacturing in particular Fused Deposition Modeling (FDM) is presented and compared against traditional model making methods. An economical analysis is presented and discussed using a case study and the potential of applying RP techniques to architectural models is discussed.
series ASCAAD
email
last changed 2007/04/08 19:47

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia08_382
id acadia08_382
authors Peters, Brady; Xavier De Kestelier
year 2008
title Rapid Prototyping and Rapid Manufacturing at Foster + Partners
doi https://doi.org/10.52842/conf.acadia.2008.382
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 382-389
summary Over the last 15 years, rapid prototyping has been an integral part of the design process in the car and aerospace industry (Brad Fox 2006). Recently the architecture profession has started to use these techniques in its design process (Greg Corke 2006), and some architecture schools have begun experimenting with these technologies. ¶ Foster + Partners have been one of the first architecture practices to fully integrate rapid prototyping within its design process. The technology was initially seen as a sketch model making tool in the early stages of the design, in particular for projects with complicated geometries. It surpassed this purpose within a year and it is now seen an essential design tool for many projects and in for many project stages. The office’s rapid prototyping department now produces about 3500 models a year. ¶ Besides, or perhaps because of, rapid prototyping, Foster + Partners have started to experiment with rapid manufacturing. This first was done through the design and manufacture of a Christmas tree for the charity organisation Save the Children.
keywords Complex Geometry; Design; Generative; Process; Rapid Prototyping
series ACADIA
last changed 2022/06/07 08:00

_id caadria2006_589
id caadria2006_589
authors YU-NAN YEH
year 2006
title FREEDOM OF FORM: THE ORIENTAL CALLIGRAPHY AND AESTHETICS IN DIGITAL FABRICATION
doi https://doi.org/10.52842/conf.caadria.2006.x.v6f
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 589-591
summary Computer-Aided Design (CAD) / Computer-Aided Manufacturing (CAM) related research has been discussed since the 1960's (Ryder, G. et al, 2002, Mark Burry, 2002). Indeed, both Frank O. Gehry and Toyo Ito utilized CAD/CAM to create rich architectural form and in so doing gave birth to a new type of aesthetics. The visualization and liberalization of form space is the single most important characteristic attributable to the use of computers as a design tool. By the 1980's, Laser cutting and Rapid Prototyping techniques developed from CAM, became important new digital tools when researchers and designers discussed the development of form in architecture.
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
doi https://doi.org/10.52842/conf.acadia.2006.148
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id ddss2006-pb-415
id DDSS2006-PB-415
authors Ching-Shun Tang
year 2006
title Smart Structure: Designs with Rapid Prototyping
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 415-429
summary This research presents the new orientation of the combination of digital modelling with generative programming and joint method of traditional wood structure for manipulating Rapid Prototyping to explore the assembling of free form objects. The presenting of the example indicates that the edition of Maya scripts defines the purpose of design. Through the discussion on scripts developing the assembly of the free-form objects of frames and surfaces and through the achievement that RP produces and examines objects, we bring out the possibilities of the new form developed from the old structure and illustrate how to develop our hypothesis. The developed result could provide the possible new way for free-form assembly. We expatiate our research process and final achievement and provide a new thinking direction in the education field.
keywords CAD/CAM, Digital fabrication, Rapid prototyping, Traditional wood structure
series DDSS
last changed 2006/08/29 12:55

_id acadia06_392
id acadia06_392
authors Dorta, T., Perez, E.
year 2006
title Hybrid modeling revaluing manual action for 3D modeling
doi https://doi.org/10.52842/conf.acadia.2006.392
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 392-402
summary 3D modeling software uses conventional interface devices like mouse, keyboard and display allowing the designer to model 3D shapes. Due to the complexity of 3D shape data structures, these programs work through a geometrical system and a graphical user interface to input and output data. However, these elements interfere with the conceptual stage of the design process because the software is always asking to be fed with accurate geometries—something hard to do at the beginning of the process. Furthermore, the interface does not recognize all the advantages and skills of the designer’s bare hands as a powerful modeling tool.This paper presents the evaluation of a hybrid modeling technique for conceptual design. The hybrid modeling approach proposes to use both computer and manual tools for 3D modeling at the beginning of the design process. Using 3D scanning and rapid prototyping techniques, the designer is able to go back and forth between digital and manual mode, thus taking advantage of each one. Starting from physical models, the design is then digitalized in order to be treated with special modeling software. Then, the rapid prototyping physical model becomes a matrix or physical 3D template used to explore design intentions with the hands, allowing the proposal of complex shapes, which is difficult to achieve by 3D modeling software alone.
series ACADIA
email
last changed 2022/06/07 07:55

_id ijac20064307
id ijac20064307
authors Goldberg, Sergio Araya
year 2006
title Computational Design of Parametric Scripts for Digital Fabrication of Curved Structures
source International Journal of Architectural Computing vol. 4 - no. 3, 99-117
summary This paper explores strategies for building toolchains to design, develop and fabricate architectural designs. It explains how complex curved structures can be constructed from flat standard panels. The hypothesis of this research is that by embedding ruled based procedures addressing generative, variational, iterative, and fabricational logics into early phases of design, both design techniques and digital fabrication methods can merge to solve a recurrent problem in contemporary architectural design, building double curved structures. Furthermore it achieves this using common fabrication methods and standard construction materials. It describes the processes of programming computational tools creating and developing designs to fabricate continuous complex curved structures. I describe this through a series of experiments, using parametric design environments and scripted functions, implementing certain techniques to fabricate these designs using rapid prototyping machines. Comparing different design and fabrication approaches I offer a discussion about universal application of programmed procedures into architectural design.
series journal
last changed 2007/03/04 07:08

_id ijac20064308
id ijac20064308
authors Kenzari, Bechir
year 2006
title Physical Modeling: the Convergence of Cutting-edge Technologies and Miniature Tooling
source International Journal of Architectural Computing vol. 4 - no. 3, 119-134
summary When Rapid Prototyping and CAD/CAM technologies (including CNC and Laser Cutting) became affordable, ten years ago or so, their reception within model-making circles turned from positive to disappointing because of their incomplete adaptability to the making of architectural objects. Then it was discovered, just few years later, that many modeling details can only be worked out through the use of specific materials, accessories and miniature tools which neither fall under the CNC, Laser or Rapid Prototyping headings. This new situation has implied, among other things, that the status of the model is to be defined in terms of a convergence of particular technological possibilities. Using two specific models as examples, the present article will debate this convergence, which is now allowing a smooth and fluid interaction between several model-making techniques. The tendency of model-making to move closer to the real act of building will also be highlighted.
series journal
last changed 2007/03/04 07:08

_id caadria2006_253
id caadria2006_253
authors SERGIO ARAYA
year 2006
title DESIGNING AND FABRICATING CONTINUOUS COMPLEX CURVED STRUCTURES FROM FLAT PANEL MATERIALS USING A FLEXURE APPROACH
doi https://doi.org/10.52842/conf.caadria.2006.x.w6j
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 253-259
summary This paper describes a procedure that combines scripting and modeling in a parametric environment to design and manufacture complex double curved structures from rigid flat panels using rapid prototyping tools and CNC machining. It engages generative design techniques and programming while extending the digital design and fabrication possibilities for curved structures.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20064105
id ijac20064105
authors Sowa, Agnieszka Katarzyna
year 2006
title Towards architect-aided computing design
source International Journal of Architectural Computing vol. 4 - no. 1, 69-85
summary In the design process of some recent, specific architectural projects the part elaborated by computers and machines significantly grows. They could generate, optimize and produce the most complicated and complex solutions, taking over some tasks which before were the domain of architects. This article presents a project carried out by postgraduate students at Eidgenossische Technische Hochschule in Zurich, Switzerland, where such a digital design process was implemented, with all its advantages and disadvantages. The observations and conclusions gained during the work allow the author to formulate the concept of Architect-Aided Computing Design, to define some challenges for architects created by such a working method, and to present an analysis about the potential new software for architectural production.
keywords Structural Optimization; Rapid Prototyping; CNC Production; CAAD Education
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00006
last changed 2007/03/04 07:08

_id d7d2
id d7d2
authors Verdy Kwee, Anthony Radford, Dean Bruton, Ian Roberts
year 2006
title Architecture | Media | Representations Survey- (Exigencies at a Media Crossroad)
source Challenges for Architectural Science in Changing Climates: Proceedings of the 40th Annual Conference of the Architectural Science Association ANZAScA Adelaide, Australia | 22- 25 November 2006
summary Architectural information has been presented in a myriad of ways through various media for the purpose of public education. Rapid technological change tremendously affects the modes and techniques of communication media necessitating a reassessment of these vehicles. This paper suggests that if the medium should continue to be the ‘massage’ (McLuhan, 1967), it is imperative that we should understand the implications our choice and use of various media for communication of specific data, especially in relation to a targeted audience.

The paper presents the results and analyses of an online user survey (please refer to http://cumincad.scix.net/data/works/att/8d88.content.09055.pdf) which considers the use of currently available media, their roles and performance in the delivery of information of architectural works. It proposes suggestions for the manner and reasons these factors fashion users’ preferences. It also highlights several aspects of architectural data (e.g. forms, lighting, materials, etc) as well as those of the respective media used to represent them while indicating how significant end-users perceive these aspects in the process of understanding architecture. The interpretations of the results outlined in this paper may suggest some answers to the questions relating to current media use, but they may also pose more questions about the types of and the manner in which information should be delivered to architecture enthusiasts/readers. This reassessment is intended to help anticipate future directions in the application of these media in presenting architectural information. Special attention is particularly paid to the opportunities afforded by the digital platform.

keywords architecture, media, representation, survey, architectural information
series other
type normal paper
email
more contact conference committee at http://www.adelaide.edu.au/anzasca2006/
last changed 2006/12/07 05:43

_id 3ac5
id 3ac5
authors Verdy Kwee, Antony Radford, Dean Bruton and Ian Roberts
year 2006
title Architecture | Media | Representations Survey- (Exigencies at a Media Crossroad)
source Adeliade, Australia
summary Architectural information has been presented in a myriad of ways through various media for the purpose of public education. Rapid technological change tremendously affects the modes and techniques of communication media necessitating a reassessment of these vehicles. This paper suggests that if the medium should continue to be the ‘massage’ (McLuhan, 1967), it is imperative that we should understand the implications our choice and use of various media for communication of specific data, especially in relation to a targeted audience. The paper presents the results and analyses of an online user survey which considers the use of currently available media, their roles and performance in the delivery of information of architectural works. It proposes suggestions for the manner and reasons these factors fashion users’ preferences. It also highlights several aspects of architectural data (e.g. forms, lighting, materials, etc) as well as those of the respective media used to represent them while indicating how significant end-users perceive these aspects in the process of understanding architecture. The interpretations of the results outlined in this paper may suggest some answers to the questions relating to current media use, but they may also pose more questions about the types of and the manner in which information should be delivered to architecture enthusiasts/readers. This reassessment is intended to help anticipate future directions in the application of these media in presenting architectural information. Special attention is particularly paid to the opportunities afforded by the digital platform.
keywords publications, user survey, perception, online, print content, education, understanding, information delivery, presentation
series other
type normal paper
email
last changed 2009/02/05 04:36

_id sigradi2021_18
id sigradi2021_18
authors Verniz, Debora and Duarte, José P
year 2021
title Assessing Santa Marta: Using Evaluation Tools to Inform Parametric Urban Design
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 749–758
summary Lack of affordable housing is a worldwide problem. Rapid urbanization, rural exodus, and poor governance policies have contributed to the problem and, in response, low-income populations resort to self-construction. The result are informal settlements located predominantly in marginalized urban areas (United Nations, 2015) that develop with neither urban infrastructure nor compliance with building and planning codes (Lall et al., 2006; Patel et al., 2018; United Nations Human Settlements Programme, 2012) and, consequently, offer a poor-quality built environment. The goal of this paper is to methodologically identify physical aspects of such built environments that could be improved. We evaluate a case study, the Santa Marta favela in Brazil, using a holistic housing-quality assessment tool and local building and planning codes as reference. Our results identify the physical characteristics with lower quality standards in the case study and demonstrate the efficacy of the methodology introduced for this purpose.
keywords housing quality assessment, building codes, informal settlements, parametric urban design, Santa Marta favela.
series SIGraDi
email
last changed 2022/05/23 12:11

_id 2006_366
id 2006_366
authors Voigt, Andreas and Bob Martens
year 2006
title Development of 3D Tactile Models for the Partially Sighted to Facilitate Spatial Orientation
doi https://doi.org/10.52842/conf.ecaade.2006.366
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 366-370
summary Lacking or poor provision of comprehensive information about the spatial environment for the purposes of effective orientation is a problem that primarily affects the blind and partially sighted, but it can also cause difficulties for older people with increasing visual impairment. This research project in progress aims to obtain new scientific findings with regard to the basic suitability and required composition of tactile models to facilitate spatial orientation for the blind and partially sighted. Tactile scale models serve as an orientation aid. Their intention is to make it easier for visually impaired people to “experience” selected structural characteristics of the real space, even if in scaled-down form. This experience allows them to experiment with space and to better recognize spatial elements and their interrelationships. It also helps them to better recognize subspaces, possible spatial sequences, as well as decision-making situations in these spaces. These tactile processes are supported by the highly sensitive tactile faculties of people with visual impairment, which are far more finely differentiated than those of sighted people who experience objects without this disability. The amount of available digital model data is constantly growing and would allow for the creation of tactile models.
keywords rapid prototyping; 3D printing (3DP); visual impairment; scale modeling; haptical interface
series eCAADe
email
last changed 2022/06/07 07:58

_id 2006_326
id 2006_326
authors Zisimopoulou, Katerina and Alexis Fragkiadakis
year 2006
title Constructing the String Wall - Mapping the Material Process
doi https://doi.org/10.52842/conf.ecaade.2006.326
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 326-335
summary The String Wall is the emergent product of a study on technological applications in architecture. Our team attempted to test the limits of the common partition wall construction, challenging the standard notion of the partition screen wall that recedes behind the structures, spaces and objects as a background condition. Such vibrant a partition as the SW becomes the center to the formation of the space it defines. The story of the SW could be described as the organic combination of the bow and the twist. The latent materiality and geometry of the bow and the twist as composite systems that are mined for their structural, tectonic and programmatic potential are tested prior to final construction by 3D printed scaled models. The SW is composed of successive frames that consist of vertical twisted strips of plywood attached to wooden beams. These frames emulate the stud elements of the conventional dry wall partition systems and are manufactured entirely manually. On the other hand, the use of CNC milling machine is employed for the production of the bowed plywood strips that fill in the frame. Three fluctuated curvatures produce strips that are combined rhythmically to produce the striated effect of the SW. The material is manipulated in order to expose its hidden side, the sequence of the multiple layers of the different infilling conditions. The oblique perspective of the SW is achieved through a novel geometric transparency, thus offering constantly changing views to a moving observer. The manipulation of the position of the component bowed and twisted strips explore the application of a see-through condition that escapes the norm and reveals the back to the front in a unique whole. The void of the screen wall becomes ultimately programmatic through the use of light. A sequence of halogen lights situated at the top and bottom of the in-between the wooden strips void create the dumbfounded effect of the SW experience.
keywords Digital construction methods; shape studies; rapid prototyping; 3D printer models
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia06_158
id acadia06_158
authors Barrow, Larry R.
year 2006
title Digital Design and Making 30 Years After
doi https://doi.org/10.52842/conf.acadia.2006.158
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 158-177
summary Current design studio pedagogy is undergoing significant change as the means and methods of ideation, representation and making evolve with digital tools; Computer-Aided-Design-Computer-Aided-Manufacturing (CADCAM) remains a contentious topic among many studio instructors and faculty in the academy. Computing is now nearing ubiquity; many processes and products have seen significant evolutionary trends, if not revolutionary transformations; this is no less the case in the academic and firm design studio. The impact of “digital” media and CADCAM, in the design-make process, remains obscure and formally unknown.In this paper, we will review our research and findings from the work of three students; two current students who were in our Digital Design II (DDII) spring 2006 course and the third student, the writer, will reflect on “design and making” from a “pre-architecture” and pre-studio/pre-computer (CADCAM) perspective of ‘making’ thirty-three years ago. The research findings provide universal precepts pertinent to current thinking about emerging studio pedagogy. Our findings suggest that computing technology should be introduced at the outset of design education for the beginning student in basic design studio; and moreover, advanced designers can partner with “digital” tools to ideate and realize their, heretofore unrepresentable and unconstructable, ideas in the early stages of design using CADCAM.
series ACADIA
email
last changed 2022/06/07 07:54

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 8b29
id 8b29
authors Chaszar, A. (ed.), Burry, M., Eliassen, T., Garofalo, D., Glymph, J., Hesselgren, L., Jonkhans, N., Kienzl, N., Kloft, H., Maher, A., Mueller, V., Palmer, A., Reuss, S., Schuler, M., Schwitter, C., Sharples, C., Sharples, W., Shea, K., Stoller, P., Takemori, T., Woodger, N.
year 2006
title Blurring the Lines: Computer-Aided-Design and -Manufacturing in Architecture
source Wiley-Academy, London 224 pp. Architecture in Practice series
summary The first few years of the 21st century have seen a revolution in the ways that we think about designing and making buildings. In no other area is this more apparent than in the interface of computer-aided design (CAD) and computer-aided manufacture (CAM). The potential blurring or assimilation of these two systems holds the still elusive but golden promise of a direct, smooth transference of design data into large-scale production facilities in which components are directly cut, modelled and moulded. How far off are we from seeing the widespread adoption of this technology? What is the potential for CAD/CAM beyond tailor-made forms? In the future, what is the possibility of complex, large-scale forms being run out in mass-customised buildings?
keywords associative geometry, auralization, CNC, collaborative design, generative design, parametric design, simulation, visualization
series book
type normal paper
email
last changed 2006/06/12 23:35

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_58831 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002