CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id 2006_074
id 2006_074
authors Gül, Leman Figen and Mary Lou Maher
year 2006
title The Impact of Virtual Environments on Design Collaboration
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 74-83
doi https://doi.org/10.52842/conf.ecaade.2006.074
summary With recent developments in communication and information technology there has been increasing research into the role and the impact of computer media in collaborative design. This paper presents a case study that compares two designers collaborating in three different types of virtual environments with face to face (FTF) collaboration. The aim of the study is to identify similarities and differences between remote locations in order to have a better understanding of the impact of different virtual environments on design collaboration. Our results show that the architects had different designing behaviour depending on the type of external representation: they developed more design concepts, and had more design iterations through analysis-synthesis-evaluation while designing FTF and in a remote sketching environment; while the same architects focused on one design concept and making the design when designing in 3D virtual worlds.
keywords Collaborative design; virtual environments; remote sketching; 3D virtual worlds; face to face collaboration
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia06_496
id acadia06_496
authors Jemtrud, Michael
year 2006
title Eucalyptus: User Controlled Lightpath Enabled Participatory Design Studio
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 496-509
doi https://doi.org/10.52842/conf.acadia.2006.496
summary A new notion of participation is at stake with advances in technologically mediated work environments. The digitally mediated e-design studio has been around since the mid-1990’s and has been employed in various forms in disciplines including architecture/engineering/construction (AEC), industrial design, and the automotive industry. Insufficient bandwidth and insufficiently powerful, crudely coordinated tools resulted in distributed task-based modes of collaboration that did not allow full participation by members of the distributed design team. At the very least, the present “second generation” network severely limits the applications, tools, and modes of communication that can be used in data and visualization intense design scenarios. The emergence of Service Oriented Architectures and User-Controlled LightPaths (“intelligent infrastructure”) herald the beginning of a new age where fully participatory multi-site design may become possible. The networks, visualization & communication tools, Service Oriented Architecture & Web Services, work protocols, and physical site designs of the Participatory Design Studio (PDS) being developed by the authors will constitute one of the first working examples of this future. This paper will briefly outline the “mise en scène” or staging of the technical configuration of the Eucalyptus project; observations and results from the creative activity of the PDS in the context of two case studies; and speculate on the implications for design activity, pedagogy, and a more robust mode of participation.
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2006_553
id caadria2006_553
authors MARY LOU MAHER, ZAFER BILDA, LEMAN FIGEN GÜL, DAVID MARCHANT
year 2006
title STUDYING COLLABORATIVE DESIGN IN FACE TO FACE, REMOTE SKETCHING, AND 3D VIRTUAL WORLD ENVIRONMENTS
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 553-555
doi https://doi.org/10.52842/conf.caadria.2006.x.j4o
summary The impact of collaborative design in virtual environments on the behaviour of designers depends on the nature of the design task and the resources available to the designers. By introducing new technology, we can identify the kinds of positive impacts that should be integrated, and the kinds of negative impacts that should be eliminated, in order to improve the collaborative design environment. We studied designers collaborating in three environments: (1) face-to-face with their current design and communication tools (pen and paper), (2) a shared remote drawing system (Group Board) with synchronous voice and video conference and (3) a 3D virtual world with synchronous voice and video conference. Collaborative design sessions of 5 architect pairs were video recorded. They respectively worked on separate design briefs in the three different design settings. Protocol analysis was used to study and compare collaborative design behaviour.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 2006_494
id 2006_494
authors Mizban, Nawara and Andrew Roberts
year 2006
title The Place of E-learning in Architectural Education - A Critical Review
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 494-501
doi https://doi.org/10.52842/conf.ecaade.2006.494
summary E-learning is rapidly becoming a key element of institutional teaching and learning strategies with many academic departments seizing the opportunity to use technology to enhance their educational provision. This review aims to investigate the effects of E-learning on design teaching in schools of architecture. In order to achieve those aims, the outcome of a number of academic experiences conducted to explore E-learning in architectural design teaching, were analysed. The role of E-learning was critically analysed in design teaching, and consideration was given to the way in which E-learning might promote new learning environments, and learning methods. The review attempt to identify the barriers that might face schools of architecture when integrating E-learning in the design teaching, and resulting in short-lived project. The review formulated important findings that explain the reasons, which underpin the schools’ attempts to use E-learning in design teaching and how schools integrated different technologies in their learning.
keywords E-learning; Remote collaboration; Virtual design studio
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2006_e090b
id sigradi2006_e090b
authors Hanna, Sean and Turner, Alasdair
year 2006
title Teaching parametric design in code and construction
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 158-161
summary Automated manufacturing processes with the ability to translate digital models into physical form promise both an increase in the complexity of what can be built, and through rapid prototyping, a possibility to experiment easily with tangible examples of the evolving design. The increasing literacy of designers in computer languages, on the other hand, offers a new range of techniques through which the models themselves might be generated. This paper reviews the results of an integrated parametric modelling and digital manufacturing workshop combining participants with a background in computer programming with those with a background in fabrication. Its aim was both to encourage collaboration in a domain that overlaps both backgrounds, as well as to explore the ways in which the two working methods naturally extend the boundaries of traditional parametric design. The types of projects chosen by the students, the working methods adopted and progress made will be discussed in light of future educational possibilities, and of the future direction of parametric tools themselves. Where standard CAD constructs isolated geometric primitives, parametric models allow the user to set up a hierarchy of relationships, deferring such details as specific dimension and sometimes quantity to a later point. Usually these are captured by a geometric schema. Many such relationships in real design however, can not be defined in terms of geometry alone. Logical operations, environmental effects such as lighting and air flow, the behaviour of people and the dynamic behaviour of materials are all essential design parameters that require other methods of definition, including the algorithm. It has been our position that the skills of the programmer are necessary in the future of design. Bentley’s Generative Components software was used as the primary vehicle for the workshop design projects. Built within the familiar Microstation framework, it enables the construction of a parametric model at a range of different interfaces, from purely graphic through to entirely code based, thus allowing the manipulation of such non-geometric, algorithmic relationships as described above. Two-dimensional laser cutting was the primary fabrication method, allowing for rapid manufacturing, and in some cases iterative physical testing. The two technologies have led in the workshop to working methods that extend the geometric schema: the first, by forcing an explicit understanding of design as procedural, and the second by encouraging physical experimentation and optimisation. The resulting projects have tended to focus on responsiveness to conditions either coded or incorporated into experimental loop. Examples will be discussed. While programming languages and geometry are universal in intent, their constraints on the design process were still notable. The default data structures of computer languages (in particular the rectangular array) replace one schema limitation with another. The indexing of data in this way is conceptually hard-wired into much of our thinking both in CAD and in code. Thankfully this can be overcome with a bit of programming, but the number of projects which have required this suggests that more intuitive, or spatial methods of data access might be developed in the future.
keywords generative design; parametric model; teaching
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia07_040
id acadia07_040
authors Hyde, Rory
year 2007
title Punching Above Your Weight: Digital Design Methods and Organisational Change in Small Practice
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 40-47
doi https://doi.org/10.52842/conf.acadia.2007.040
summary Expanding bodies of knowledge imply expanding teams to manage this knowledge. Paradoxically, it can be shown that in situations of complexity—which increasingly characterise the production of architecture generally—the small practice or small team could be at an advantage. This is due to the increasingly digital nature of the work undertaken and artefacts produced by practices, enabling production processes to be augmented with digital toolsets and for tight project delivery networks to be forged with other collaborators and consultants (Frazer 2006). Furthermore, as Christensen argues, being small may also be desirable, as innovations are less likely to be developed by large, established companies (Christensen 1997). By working smarter, and managing the complexity of design and construction, not only can the small practice “punch above its weight” and compete with larger practices, this research suggests it is a more appropriate model for practice in the digital age. This paper demonstrates this through the implementation of emerging technologies and strategies including generative and parametric design, digital fabrication, and digital construction. These strategies have been employed on a number of built and un-built case-study projects in a unique collaboration between RMIT University’s SIAL lab and the award-winning design practice BKK Architects.
series ACADIA
email
last changed 2022/06/07 07:50

_id 2006_486
id 2006_486
authors Jemtrud, Michael; Martin Brooks; Bobby Ho; Sandy Lui; Philam Nguyen; John Spence and Bruce Spencer
year 2006
title Intelligent Infrastructure Enabled Participatory Design Studio - Eucalyptus: Collaborating at the speed of light
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 486-493
doi https://doi.org/10.52842/conf.ecaade.2006.486
summary A new notion of participation is at stake with advances in technologically mediated work environments. Insufficient bandwidth and insufficiently powerful, crudely coordinated tools resulted in distributed task-based modes of collaboration that did not allow full participation by members of the distributed design team. The emergence of Service Oriented Architectures and User-Controlled LightPaths (“intelligent infrastructure”) herald the beginning of a new age where fully participatory multi-site design may become possible. This paper will briefly outline the “mise en scène” or staging of the technical configuration of the Eucalyptus project; observations and results from the creative activity of the PDS in the context of two case studies; and speculate on the implications for design activity, pedagogy, and a more robust mode of participation.
keywords participatory design studio; e-design; SOA; architectural design education; design methods; dashboard
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2006_133
id caadria2006_133
authors MARY LOU MAHER, MIKE ROSENMAN, KATHRYN MERRICK, OWEN MACINDOE, DAVID MARCHANT
year 2006
title DESIGNWORLD: AN AUGMENTED 3D VIRTUAL WORLD FOR MULTIDISCIPLINARY, COLLABORATIVE DESIGN
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 133-142
doi https://doi.org/10.52842/conf.caadria.2006.x.g2k
summary Large design projects, such as those in the AEC domain, involve collaboration between designers from many different design disciplines in varying locations. Existing tools for developing and documenting designs of buildings and other artifacts tend to focus on supporting a single user from a single discipline. This paper introduces DesignWorld, a prototype system for enabling collaboration between designers from different disciplines who may be in different physical locations. DesignWorld consists of a 3D virtual world augmented with a number of web-based communication and design tools. DesignWorld uses agent technology to maintain different views of a single design in order to support multidisciplinary collaboration and address issues such as multiple representations of objects, versioning, ownership and relationships between objects from different disciplines.
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2006_paper5
id ascaad2006_paper5
authors Yuan Chen, Shang
year 2006
title A Collaborative Digital Design Workshop: an ANN-based paradigm approach
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This paper relies on observation and analysis an internationally digital design exchange activity, “The FCU & Bartlett School of Architecture, university college London (UCL) digital architecture workshop” to propose an educational model based on the artificial neural network (ANN). We expect that the results of this work can lead to the establishment of a scoring mechanism that can "adapt" to the difficulty of assigned problems and assess students' progress. An international technological exchange workshop based on the theme of digital design is helpful to attain an accelerated heightening in the quality and experience of education. This is going to be an educational trend and increasingly prevalent in the future. A successful educational curriculum in digital design relies on a concerted effort amongst curriculum framework, learning activities, and course content. While, an internationally exchange digital design workshop is different from traditional "semester-based" units of curriculums. The short-term educational models are required high degrees interaction and collaboration. On the other hand, artificial neural network system that is context aware in ill-defined and complex environments is highly adaptive. It can extract, interpret and use the context information and adapt its functions to obtain an optimal correspondence between “context change” and “desired goal” efficiently. Therefore, an ANN-based pedagogical mechanism is able to encourage students to select relatively difficult design problems and promote more design originality, interaction and collaboration.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_000
id 2006_000
authors Bourdakis, Vassilis and Charitos, Dimitris (eds.)
year 2006
title Communicating Space(s)
source 24th eCAADe Conference Proceedings [ISBN 0-9541183-5-9], Volos (Greece) 6-9 September 2006, 914 p.
doi https://doi.org/10.52842/conf.ecaade.2006
summary The theme of this conference builds on and investigates the pre-existing and endlessly unfolding relationship between two domains of scientific inquiry: Architecture, urban design and planning, environmental design, geography and Social theory, media and communication studies, political science, cultural studies and social anthropology. Architectural design involves communication and could thus be partly considered a communicational activity. Designers (or not) see architectural designs, implicitly, as carriers of information and symbolic content; similarly buildings and urban environments have been “read” and interpreted by many (usu- ally not architects) as cultural texts. At the same time, social and cultural studies have studied buildings and cities, as contexts for social and cultural activities and life in general, from their mundane expression of “everyday life” (Highmore, 2001) to elite expressions of artistic creativity and performance. Information and communication technologies (ICTs) support both of these levels of scientific inquiry in many ways. Most importantly however, ICTs need design studies, architectural and visual design, social and cultural studies in their quest to create aesthetically pleasing, ergonomically efficient and functional ICT sys- tems; this need for interdisciplinarity is best articulated by the low quality of most on-line content and applica- tions published on the web.
series eCAADe
type normal paper
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id 2006_656
id 2006_656
authors Breen, Jack and Martijn Stellingwerff
year 2006
title De-coding the Vernacular - Dynamic Representation Approaches to Case-based Compositional Study
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 656-663
doi https://doi.org/10.52842/conf.ecaade.2006.656
summary Representational approaches have always played an important role in the design-driven development of built environments, the analytical study of architectural compositions and their effects. With the introduction – and successive steady development – of computer-based platforms of visualization, the professional and intellectual palette of designers, as well as researchers, have expanded considerably. Nonetheless, in recent years the opportunities for systematic scrutiny and understanding of the expressive qualities of design proposals and artefacts have all too frequently been overshadowed by high-flying conceptual developments and seductive representation modes. It is time that the objective description and unravelling of architectural compositions – so to speak the discipline of Ekphrasis in design practice, education and research – is once again given more prominence in architectural discourse and debate. The central idea behind this contribution is that, by linking instruments of design with the methods of formal composition and decomposition, renewed opportunities for representation-driven study in a scholarly context, focusing upon elusive compositional attributes and their workings, may be given a new impulse. The project that is presented here concerns a case-based explorative study into the domains of aesthetic convention and invention, making use of a variety of virtual and physical representation techniques. These include digital as well as tangible modelling and sketching approaches (separately and in combination), in conjunction with computer-based image manipulation techniques, making use of systematic data identification and denotation. The opportunities, merits and shortcomings of the computer-based and physical visualization approaches, which were applied and tested, are discussed on the basis of results and findings from the ongoing AA Variations project.
keywords Design representation; Computer-based sketching; Virtual and physical modelling; Compositional variation; Contemporary aesthetics
series eCAADe
email
last changed 2022/06/07 07:54

_id eaea2005_49
id eaea2005_49
authors Breen, Jack
year 2006
title The Model Image
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 49-59
summary Designing is a specialized, unpredictable development process which is to a large extent visually generative and reflective – and, as such, predominantly pre-linguistic. Architectural designers make creative use of various imaging techniques, in order to elucidate design concepts that would otherwise remain ‘figments of the imagination’. By projecting their ideas, into readable information, these may be shared, communicated, evaluated and developed further. In this context, various types of models play an important role on different levels of design driven enquiry and representation. This contribution explores the dynamic conditions and potentials of models in architecture, in particular as a prerequisite for visual exploration and communication.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id caadria2006_295
id caadria2006_295
authors CHIUNG-HUI CHEN, MAO-LIN CHIU
year 2006
title TOWARDS A WEB-BASED URBAN STREET SIMULATOR FOR PEDESTRIAN BEHAVIORS STUDY WITH AGENT-BASED INTERFACES
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 295-302
doi https://doi.org/10.52842/conf.caadria.2006.x.g2a
summary The urban planning has largely placed the street users at the centre of infrastructural design, with significant implications for the perceived attractiveness of user environments. The urban designers faced with the task of designing such spaces and needs a tool that will allow different designs to be compared in terms of their attractiveness as well as their effectiveness. Therefore, this paper depicts an agent interface approach for creating a street simulator of user behaviors in urban street environments. We implemented the agent interface as individual-based simulation in the proposed project called "SCALE” (A Street Case Library for Environmental design). The project is demonstrated to find out differences between the simulation and the existed environment. The methodology and findings are reported.
series CAADRIA
email
last changed 2022/06/07 07:49

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddss2006-pb-289
id DDSS2006-PB-289
authors I-Chieh Huang and Teng-Wen Chang
year 2006
title A Study of Using Oversized Display in Supporting Design Communication - Focus on interior design problems
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 289-301
summary This paper focuses on using oversized display for supporting design communication process between designers and clients. The interactive behaviors are analyzed and testified with a prototype developed in this research. Based on interviews with designers and clients, focus of the communication process in this research is onto developing an immersive environment for exchanging and negotiating the design artifacts. Several immersive virtual environment as well as visualization method (display) is reviewed. Furthermore, three over-sized display projects (ShadowLight, CaveUT and Blue-c) with immersive perception at full-scale or near full-scale design artifacts are studied as the inspiration of this research. Designers identify what kinds of influence they had on the design of client's interior space and to what extent they are aware that they can design and influence their perception. An over-sized display environment with direct manipulation interface is developed for evaluation platform.
keywords Virtual environments, Collaborative design
series DDSS
last changed 2006/08/29 12:55

_id acadia07_138
id acadia07_138
authors Mathew, Anijo Punnen
year 2007
title Beyond Technology: Efficiency, Aesthetics, and Embodied Experience
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 138-145
doi https://doi.org/10.52842/conf.acadia.2007.138
summary The spaces we live in are increasingly entwined in a complex weave of architecture and technology. With the evolution of intelligent devices that work in the background, design of place will eventually be a seamless integration of not just efficient but also experiential and virtual technologies. This signals a paradigm shift because “smart” architecture affords users a new interaction with architecture. In spite of such promises, we have seen interactive architecture ideas and “smart” environments only within laboratory walls or in the form of simplistic implementations. Perhaps the reason is simple. Rachael McCann asks if the integration of technology within the context of an increasingly information-driven modern era has abandoned the body in favor of the mind (McCann 2006). If we acknowledge that “smart” computing has the opportunity to transcend an efficient backbone to generator of experiences, perhaps we, as designers, must reconsider our position and strategy in this modern world. This paper is designed as a critical essay—one which evaluates interactive architecture and “smart” environments within the context of today’s socio-cultural climate. The paper hopes to open a discussion about the role of computing as architecture and the role of the architect in the design of such architecture.
series ACADIA
email
last changed 2022/06/07 07:58

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id 2006_618
id 2006_618
authors Oh, Sooyeon and Yutaka Kidawara
year 2006
title A real-space navigation system based on ubiquitous technology
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 618-625
doi https://doi.org/10.52842/conf.ecaade.2006.618
summary In next-generation networking environments, ubiquitous networks will be available both indoors and outdoors. Various devices will be ubiquitously embedded in the surrounding environment, such as buildings and urban spaces. We will be able to browse digital contents on ubiquitous networks anywhere and at anytime. In our research, we have proposed several content-processing mechanisms for use in environment-enabled collaborative acquisition of embedded digital content in the real world situations. We have developed a network management device that makes it possible to acquire embedded content using coordinated ubiquitous devices. We have also developed two prototype systems using these devices. In this paper, we describe the implementation of a prototype system that can share 3D objects in a virtual 3D space based on a real-space environment. This system can be used not only as a virtual 3D browser in a private area, but also as an interactive digital poster in a public area. We tested our system in real situation, and explore the feasibility of applying our system in a ubiquitous environment.
keywords Ubiquitous technology; Navigation; Collaborative service; Embedded digital content; Real space
series eCAADe
email
last changed 2022/06/07 07:58

_id 2006_168
id 2006_168
authors Papalexopoulos, Dimitris
year 2006
title Digital Territories and the Design Construction Continuum
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 168-174
doi https://doi.org/10.52842/conf.ecaade.2006.168
summary The purpose of the paper is to bring together the two newly elaborated concepts of Digital Territories (DT) and Design Construction Continuum (DCC) in order to approach the design of evolving – intelligent environments.Digital Territories is a concept elaborated 2005 by a Core Expert Group, conceived as an ephemeral Ambient Intelligence (AmI) space. DTs formed through the interconnection of physical objects embedding digital technologies, postulate the integration of the physical and the digital world, searching for operative definitions of new evolving in time functionalities. In DT’s, bridges between the physical and the digital are discrete elements disposing of certain autonomy in their conception and internal structure. Bridges have to be designed and located. The DCC proposes to relate design, fabrication and construction through information networks (it is in fact a DT). Through the DCC approach, design information is becoming construction information and industrial fabrication information. The DCC has to integrate interaction design and respond to questions posed by DTs design. DTs are integrated to DCC by constituting an intermediate level between building programming and design. Intelligent Building Components, that is AmI components operating as bridges between the physical and the digital in Digital Territories formations, cooperating to develop swarm intelligence applications to architectural space, are elements managed by the DCC. DT’s are about spaces communicating and the DCC is about communicating (design) space.
keywords Digital Territories; Design Construction Continuum; Interaction Design; Evolving Environments; Intelligent Environments; Location Diagrams; Building Programming
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_780982 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002