CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id acadia06_455
id acadia06_455
authors Ambach, Barbara
year 2006
title Eve’s Four Faces interactive surface configurations
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 455-460
doi https://doi.org/10.52842/conf.acadia.2006.455
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture.The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes: the Individuated, the Traditional, the Conflicted, and the Assured (York and John 1992). For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual. However, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure.” The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how each configuration may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_040
id 2006_040
authors Ambach, Barbara
year 2006
title Eve’s Four Faces-Interactive surface configurations
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 40-44
doi https://doi.org/10.52842/conf.ecaade.2006.040
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture. The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes; the “Individuated”, the “Traditional”, the “Conflicted” and the “Assured”. (York and John, 1992) For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual; however, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure”. The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how it may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
keywords interaction; digital; environments; psychology; prototypes
series eCAADe
type normal paper
last changed 2022/06/07 07:54

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2006_paper6
id ascaad2006_paper6
authors Biloria, Nimish; Kas Oosterhus, and Cas Aalbers
year 2006
title Design Informatics: a case based investigation into parametric design scripting and CNC based manufacturing techniques
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for manifesting complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This designresearch approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. A pattern of points attained from this intersection: ‘the point cloud’ serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed scriptroutines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct thus enabling timely and effective construction of the conceptualized form.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_786
id 2006_786
authors Burry, Jane and Mark Burry
year 2006
title Sharing hidden power - Communicating latency in digital models
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 786-793
doi https://doi.org/10.52842/conf.ecaade.2006.786
summary As digital spatial models take on the complex relationships inherent in a lattice of dependencies and variables, how easy is it to fully comprehend and communicate the underlying structure and logical subtext of the architectural model: the metadesign? The design of a building, the relationships between a host of different attributes and performances was ever a complex system. Now the models, the representations, are in the early stages of taking on more of that complexity and reflexivity. How do we share and communicate these modelling environments or work on them together? This paper explores the issue through examples from one particular associative geometry model constructed as research to underpin the collaborative design development of the narthex of the Passion Façade on the west transept of Gaudi’s Sagrada Família church, part of the building which is now in the early stages of construction.
keywords Design communication; CAD CAM; mathematical models
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
doi https://doi.org/10.52842/conf.acadia.2006.148
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia06_540
id acadia06_540
authors Diewald, J., Frederick, M.
year 2006
title Building Information Modeling: Interactive Versioning Experiment
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 540-541
doi https://doi.org/10.52842/conf.acadia.2006.540
summary Interactive Versioning, is the first experiment of an ongoing investigation into the conceptual role of parametric modeling in the design process. In this case, the form is defined by constrained floor-plate relationships. Originally testing methods using numerical values exported to excel, we obtained undesirable results and shifted our focus to the creation of an interactive model; restoring the direct influence of user input. The result is a 10-floor structure that allows the user to tweak point locations along the slab perimeters that in turn have global effect on the overall geometry of the architectural body. We are using four point definition types: reference above, interactive reference, reference below, and independent value. Interactive reference points use referential constraints defined as x and y distances from the global origin, which change on account of user inputs. Reference above points pull (x,y) values from an interactive point above. Reference below points pull (x,y) values from interactive points below. Independent points are unaffected by changes in any of the other points but may also be tweaked to adjust a form. On any given level, there are 2 interactive reference points, 2 reference above points, 2 reference below points, and 4 independent points. Additionally, 2 length constraints link interactive points with reference above points on the same level. This allows for changes to affect the entire structure rather than only the floor plates immediately above and below a given change. The addition of constraints to the floor outlines will yield a variety of formal results and offer the possibility to further control the output.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2006_670
id 2006_670
authors Fricker, Pia and Alexandre Kapellos
year 2006
title Digital Interaction in Urban Structure - Reflection : Six years and still scanning
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 670-673
doi https://doi.org/10.52842/conf.ecaade.2006.670
summary The focus in our elective course for Master Students of Architecture is the following: in parallel to a more traditional way of analysing urban structures, how can the application of multimedia technology, networking and the integration of interactive computer applications lead to a different approach? The objective of our teaching and research project is to find out in what ways urban structure and specific features of a city can be represented by interactive interfaces and the use of CNC technology. Our attitude is based on small-scale approach: the sum of these microanalyses gives us the broader picture, the system or mechanisms of the city. We do not dive into the city but emerge from it. This reflection leads to a new understanding in the organisation of complex urban structures, highlighting and revealing different connections and relationships, thus giving a different final image.
keywords Abstract Types of Spatial Representation; Interaction – Interfaces; Innovative Integration of Multimedia Technology; Digital Design Education
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2006_593
id caadria2006_593
authors GUI-HYUN LEE, EUN-JOO SIN, SO-YOUNG KIM, SUNG–HO WOO, SOON-BUM LIM
year 2006
title REPRESENTATION TECHNIQUE FOR STRUCTURE AND PROCESS OF 3D CONSTRUCTION MODEL
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 593-595
doi https://doi.org/10.52842/conf.caadria.2006.x.m2c
summary With the recent developments in computer technology studies on how to digitally restore traditional buildings to their original state are being pursued. It is highly important that the public can be educated by digitally restoring these buildings online and/or offline. However, it is necessary to develop several techniques to understand a structural order and construction process in traditional buildings. We propose new techniques that we can better understand them and fit them into society in the education and the publicity.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ddss2006-hb-309
id DDSS2006-HB-309
authors John S. Gero and Udo Kannengiesser
year 2006
title A Framework for Situated Design Optimization
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 309-324
summary This paper presents a framework for situated design optimization that expands the traditional view of design optimization. It is based on the notion of interaction providing the potential for modifications of various aspects of the optimization process: problem formulation, the optimization tool, the designer and ultimately the result. In contrast to other approaches, these modifications can drive further interactions within the same optimization process. We use parts of the situated function-behaviour-structure (FBS) framework as an ontological basis to describe the effects of intertwined interactions and modifications on the state space of ongoing optimization processes.
keywords Design optimization, Situatedness
series DDSS
last changed 2006/08/29 12:55

_id caadria2006_081
id caadria2006_081
authors JÖRG RÜGEMER
year 2006
title WEB BASED DESIGN AND COMMUNICATION PEDAGOGY : Group pedagogy and the implementation of web-based technologies within the design process
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 81-90
doi https://doi.org/10.52842/conf.caadria.2006.x.p2s
summary The success of the international Zollhof project in Düsseldorf, Germany, in which virtual communication played a crucial role, was the catalyst for introducing interdisciplinary digital methods in the field of teaching. The firm of Frank O. Gehry and Associates, Santa Monica, California, served as an initial field of experimentation in order to bring together a heterogeneous group of project partners to participate in the design and construction phases of the Zollhof project. The design development, construction document, and construction phase was considerably enhanced by the employment of digital media as a communication and information tool. Parallel to the design process in the office in Santa Monica, a line of information flow and management had to be established to connect the local design team with consultants that were located in Europe and specifically in Germany. This line of communication required the team to send precise descriptions of project steps to the participants abroad, as well as receiving and processing a flow of responses returning to the Santa Monica office in very short intervals. By advancing and documenting each design and development step, the project progression was clearly documented by the project teams and thus understandable to everybody involved. The process demanded a highly articulated project description in text and images that were refined and exchanged daily. This helped to strengthen the cooperation between the design team and the project consultants and started to dissolve the role of the prime architect or designer toward a more team-related and democratic structure. All participants had quick access to all necessary information, which set aside the vertical hierarchy in favor of transparent communication tools and platforms.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2024_59
id caadria2024_59
authors Lai, Ih-Cheng
year 2024
title EMO-Space: A Computational Model for Interaction between Emotions and Space
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 3, pp. 401–410
doi https://doi.org/10.52842/conf.caadria.2024.3.401
summary Architectural space can trigger emotion (Zumthor, 2006). Psychologists Mehrabian and Russell (1974) proposed PAD model, presenting eight emotions as a means for psychologists to self-assess the emotional conditions of human experience and to provide people with a way to conceptualize the impact of cognitive structure. The Brain-Computer Interface (BCI) combines with computer operations to decode and calculate different brain waves generated by human emotions, supporting the convenience and wisdom of human life. The integration of the PDA model and BCI technology will offer an understanding of the interactive relationships between space and emotion. The purpose of this research is to construct a computational model called EMO-Space, which can autonomously support space interaction through the understanding of human emotions. Based on the PAD model, the integration of BCI, the mechanism of emotional transformation, and the control of message transmission are explored. Subsequently, the computational model is proposed and simulated. EMO-Space will provide the basis for the intelligence of emotional space in the future, such as in elderly care and spatial healing.
keywords emotional space, emotion, interaction, BCI, computational model
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2006_237
id caadria2006_237
authors N.BILORIA, K.OOSTERHUIS, C. AALBERS
year 2006
title DESIGN INFORMATICS: (A case based investigation into parametric design, scripting and CNC based manufacturing techniques)
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 237-244
doi https://doi.org/10.52842/conf.caadria.2006.x.q9e
summary The research paper exemplifies a novel information integrated design technique developed at ONL (Oosterhuis and Lenard), Netherlands, specifically appropriated for envisaging complex geometric forms. The ‘informed design technique’, apart from being highly instrumental in conceptualizing and generating the geometric component constituting architectural form in a parametric manner, is also efficiently utilized for precise computer aided manufacturing and construction of the speculated form. Geometric complexities inherent in contemporary architectural constructs and the time spent in appropriation of such topologies, fueled the ‘informed design’ approach, which caters to issues of timely construction, precision oriented design and production (visual and material) and parametric modeling attuned to budgetary fluctuations. This design-research approach has been tested and deployed by ONL, for conceiving ‘the Acoustic Barrier’ project, Utrecht Leidsche Rijn in the Netherlands and is treated as a generic case for exemplifying the ‘informed design’ technique in this research paper. The design methodology encourages visualizing architectural substantiations from a systems perspective and envisages upon a rule based adaptive systems approach involving extrapolation of contextual dynamics/ground data in terms of logical ‘rules’. These rules/conditionalities form the basis for spawning parametric logistics to be mapped upon geometric counterparts exemplifying the conception. The simulated parametric relations bind dimensional aspects (length, width, height etc.) of the geometric construct in a relational manner, eventually culminating in a 3D spatial envelope. This evolved envelope is subsequently intersected with a ‘parametric spatio-constructive grid’, creating specific intersecting points between the two. The hence extorted ‘point cloud’ configuration serves as a generic information field concerning highly specific coordinates, parameters and values for each individual point/constructive node it embodies. The relations between these points are directly linked with precise displacements of structural profiles and related scaling factors of cladding materials. Parallel to this object oriented modeling approach, a detailed database (soft/information component) is also maintained to administer the relations between the obtained points. To be able to derive constructible structural and cladding components from the point cloud configuration customized Scripts (combination of Lisp and Max scripts) process the point cloud database. The programmed script-routines, iteratively run calculations to generate steel-wire frames, steel lattice-structure and cladding panels along with their dimensions and execution drawing data. Optimization-routines are also programmed to make rectifications and small adjustments in the calculated data. This precise information is further communicated with CNC milling machines to manifest complex sectional profiles formulating the construct hence enabling timely and effective construction of the conceptualized form.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_302
id 2006_302
authors Dounas, Theodoros and Anastasios M. Kotsiopoulos
year 2006
title Generation of alternative designs in architectural problems using Shape Grammars defined with animation tools - A computer implementation of shape grammars using modelling and animation software
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 302-307
doi https://doi.org/10.52842/conf.ecaade.2006.302
summary We present a model of generation of alternative designs to selected architectural and spatial configurations of small complexity. Specifically we present a production pipeline of architectural / spatial configurations using the context of animation and time based design tools. Our model consists of time and space design constraints of boundaries / objects affecting a given architectural design, thus producing an alternative solution for every timeframe of the animation cycle. The alternative designs vary from the original according to their temporal and/or spatial distance from the original object on the animation time-line. The constraints placed upon the objects , used as actuators of Shape Grammars, are defined informally by the user/designer while their influence can vary according to time, speed, location, configuration of the object and/or the constraint itself. However the constraints further function as formal rules for the Shape Grammar creation so that our model tries to predict ahead of time the emergence of alternate designs. The employ of animation tools [shape driven curves, speed and time-line functions,parent child relationships] in the shape generation of our model empowers the user/designer to configure whole sets of shapes and designs interactively and without the need to define every solution independently. Simultaneously, a different, time-focused view of our model describes its use on designs that develop different configurations over time. Thus a duality of our model is established: either the animated schema may be a sum or family of various designs or the animated time-line represents a single design which changes over time. Finally the possibility of an automated analysis of every design is discussed, using Space Syntax diagrams so the designer can quickly evaluate the various spatial configurations produced by a single original.
keywords shape computation; shape grammar computer implementation; alternative designs; animation software techniques
series eCAADe
email
last changed 2022/06/07 07:55

_id 2006_874
id 2006_874
authors Lee, Ming-xian and Ji-Hyun Lee
year 2006
title Form, Style and Function - A Constraint-Based Generative System for Apartment Façade Design
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 874-883
doi https://doi.org/10.52842/conf.ecaade.2006.874
summary This paper describes the development of a constraint-based generative system (FSF system) to support the design of middle and high-rise apartment façades from architectural plans. Floor plan and façade designs are heavily interrelated, and, sometimes, the plan constrains the façade design during the design process. This relationship lends itself to apply constraint-based systems and we have designed the system to connect intelligently between apartment plan and façade. In our system, we define constraints into three categories: structural form, architectural style and function. We use genetic algorithm to generate plausible alternatives quickly and augmented by a constraint-based system, façades can be generated and modified much more easily in terms of real-time visual feedback for checking violence of the constraints and of dealing with updates smoothly through intelligent connecting plans to façades.
keywords Generative system; Plan-to-façade; Constraint-based system; Intelligent CAD; Style description
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2006_557
id caadria2006_557
authors PREECHA MANESSATID, PETER J SZALAPAJ
year 2006
title THE DEVELOPMENT OF AN INTEGRATED ENVIRONMENTAL BUILDING DESIGN TOOL
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 557-559
doi https://doi.org/10.52842/conf.caadria.2006.x.n7f
summary Environmental design implementations are generally applied within limited and specialised areas of environmental design making them difficult to use intuitively by designers (Maneesatid and Szalapaj, 2003). Building simulations have mostly focused on accurate parameters and physical properties of building elements. Such tools typically require numerous numerical data which is often only accurately known in the detail design stages. Conventional environmental building design systems (EBS) have typically required highly experienced users who are familiar with extensive qualitative input and output requirements. A successful architectural design solution that is both energy efficient and environmentally friendly, cannot be obtained simply by additively combining a set of discrete specialist analyses. A move towards better architectural design with environmental considerations can be achieved by allowing designers themselves to express relationships between salient environmental parameters that can subsequently be analysed in integrated ways. This presentation is concerned with the issues involved in developing a quick and intuitive interface for expression of relationships between environmental parameters.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 2006_320
id 2006_320
authors Ahmad, Sumbul and Scott Chase
year 2006
title Grammar Representations to Facilitate Style Innovation - An Example From Mobile Phone Design
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 320-323
doi https://doi.org/10.52842/conf.ecaade.2006.320
summary Previous research in generative design has suggested that shape grammar transformations could be used for developing new design styles by the systematic modification of grammars that encode existing styles. Our research explores how such grammar transformations can be facilitated to be responsive to changes in design style requirements. For this it is important to consider the structure and organization of rules, as well as the description of the styles of designs generated by a grammar. Using an example of mobile phone design, we outline the development of a flexible grammar structure that is conducive to transformations. The grammar is augmented with a style description scheme based on the concept of semantic differential to map the style characteristics of grammar components. These measures could be significant for driving purposeful grammar transformations for style adaptation and innovation.
keywords Design grammars; style; product design; generative design
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2006_paper23
id ascaad2006_paper23
authors Ali, Rasha
year 2006
title Islamic Architecture and Digital Databases
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Epigraphy in Islamic architecture represented an indispensable element in its conceptual design and structure. Our research investigates this unique role, which epigraphy played in Islamic architecture as a tool singularizing this architecture and the sensuality it inspires inside a building while bestowing on it its particular identity. This how SADEPIG came to being: it is a virtual database regrouping all the information about the monumental epigraphy which date from the Sa‘dian period in Morocco (1527- 1660). The digital corpus of monumental Sa‘dian inscriptions provides also buildings plans, virtual tour within the monument, construction details, information about the identity of patron and builders.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddss2006-pb-101
id DDSS2006-PB-101
authors Aloys W.J. Borgers, I.M.E. Smeets, A.D.A.M. Kemperman, and H.J.P. Timmermans
year 2006
title Simulation of Micro Pedestrian Behaviour in Shopping Streets
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 101-116
summary Over the years, scholars have developed various models of pedestrian movement. These models can be used to assess the effects of detailed design decisions or to predict pedestrian behaviour under conditions of crowding. To date, not much attention has been paid to pedestrians' shopping behaviour at the micro level. Therefore, the main purpose of this project is to test a model that aims at simulating micro pedestrian behaviour in shopping streets, including entering shops. The model assumes a detailed network of links to represent the structure of street segments and entrances to the shops. The basic principle underlying the model is that a pedestrian moves from one link in the network to another, adjacent link. In fact, a pedestrian enters a segment at one side, heading for the other side of the segment. However, a pedestrian might enter the segment by leaving a shop as well. Then, the pedestrian might be heading for either side of the segment. While transferring from the current link to the next link, the pedestrian will be attracted by the shops along both sides of the street. The study area is Antwerp's main shopping street. During a one-week workshop in July 2004, students observed pedestrian movement in this shopping street. An inventory of some physical characteristics of the shopping street was made and pedestrians were tracked through two separate segments of the shopping street. In total, 334 pedestrians were tracked. A conventional multinomial logit model is used to simulate pedestrians' micro behaviour. The process of consecutively selecting links continues until the pedestrian has reached one of the terminal links or a shop. The model performs very well. Simulated routes were used to assess the validity of the model. Observed and simulated link loading correspond fairly well, however, the model seems to slightly mispredict the attraction of a number of shops.
keywords Micro pedestrian behaviour, Shopping street, Simulation
series DDSS
last changed 2006/08/29 12:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_978273 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002