CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id caadria2006_071
id caadria2006_071
authors YUJI MATSUMOTO, MICHITAKA KIRIKI, RYUSUKE NAKA, SHIGEYUKI YAMAGUCHI
year 2006
title SUPPORTING PROCESS GUIDANCE FOR COLLABORATIVE DESIGN LEARNING ON THE WEB:_Development of “Plan-Do-See cycle” based Design Pinup Board
doi https://doi.org/10.52842/conf.caadria.2006.x.o3i
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 71-80
summary This paper proposes the collaborative design education program on the web, based on “Plan-Do-See cycle” process model and develops the special Design Pinup Board system for running it. This program focuses on very limited environment; distributed collaboration beginners, asynchronous, first meeting, plural teams. The authors applied it to DCW2005 project and evaluated its effect from some questionnaire survey and fundamental analysis of logged data.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2006_e171c
id sigradi2006_e171c
authors González Böhme, Luis Felipe and Vargas Cárdenas, Bernardo
year 2006
title Foundations for a Constraint-Based Floor Plan Layout Support in Participatory Planning of Low-Income Housing
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 283-287
summary We introduce the foundations of a novel approach that deals with constraint-based design methods to supporting participatory planning processes of low-income dwellings. We examine the space allocation problem inside the architectural domain on the basis of graph theory and combinatorics, providing a concise mathematical background for an implementation strategy called FLS (Floor plan Layout Support), which is analyzed here for the first time regarding this particular context of application. The philosophy underlying a design method that is mainly driven by the formulation of distinct constraints suggests to avoid the traditional procedure of first to create a yet not necessarily valid instance of the eventual design solution by directly choosing specific parameter values of its shape, and later on to evaluate its validity by confronting the designed model to a set of applicable constraints. Instead, constraint-based design poses a search procedure that operates in a space of planning-relevant constraint sets. The FLS methodology integrates some few principles of constraint-based automated reasoning with high user interactivity, into a design environment where as much dwellers as planners can collaboratively work in solving spatial organization problems of housing projects. The FLS model of application makes use of a combination of dweller-specified constraints, planning and zoning regulations, and a small library of modular space units. Constraint-based design ! methods are particularly capable of supplying efficient support for the collaborative involvement of dwellers into the architectural programming process of her/his own home. Mainly, because dwellers themselves tend to describe their space need and design intentions as a set of constraints on room quantity, space utilization, circulation system, allocation of available furniture, available budget, construction time, and so forth. The goal is to achieve an integrated tool for finding and modelling topologically valid solutions for floor plan layout alternatives, by combining user-driven interactive procedures with automatic search and generative processes. Thus, several design alternatives can be explored in less time and with less effort than using mainstream procedures of architectural practice. A FLS implementation will constitute one system module of a larger integrated system model called Esther. A FLS tool shall interact with other functional modules, like e.g. the BDS (Building Bulk Design Support), which also uses constraint-based design methods. A preliminary procedural model for the FLS was tested on Chile’s official social housing standards (Chilean Building Code – OGUC. Art. 6.4.1) which are very similar to most Latin American housing programs currently in operation.
keywords constraint-based design; floor plan layout; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:52

_id 2006_884
id 2006_884
authors Grasl, Thomas; Christoph Falkner and Christian Kühn
year 2006
title Easy access classes for three-dimensional generative design - Using a collaborative environment for e-learning
doi https://doi.org/10.52842/conf.ecaade.2006.884
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 884-889
summary Part of an EU funded project to develop a “VIrtual campus for virtual space design Provided for European Architects (VIPA)” was the implementation of a practical run at the Vienna University of Technology. Therein we attempted to evaluate some of the concepts and technologies which were intended for the e-learning platform. After briefly introducing the didactical background, this paper concentrates on the technological setup accompanying the course. Especially the use of Croquet as an immersive three-dimensional environment to teach generative design is highlighted; its strengths and weaknesses in supporting our envisioned didactical concept are analysed. The practical run and its evaluation by the participating students are described, as well as some of the student work performed during and after the course. Concluding remarks elaborating on problems encountered in the software setup and in our didactical concept, followed by the description of future work to amend the above mentioned pitfalls, will mark the end.
keywords collaborative environment; croquet; generative design; learning platform, virtual space design
series eCAADe
email
last changed 2022/06/07 07:51

_id ddss2006-pb-289
id DDSS2006-PB-289
authors I-Chieh Huang and Teng-Wen Chang
year 2006
title A Study of Using Oversized Display in Supporting Design Communication - Focus on interior design problems
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 289-301
summary This paper focuses on using oversized display for supporting design communication process between designers and clients. The interactive behaviors are analyzed and testified with a prototype developed in this research. Based on interviews with designers and clients, focus of the communication process in this research is onto developing an immersive environment for exchanging and negotiating the design artifacts. Several immersive virtual environment as well as visualization method (display) is reviewed. Furthermore, three over-sized display projects (ShadowLight, CaveUT and Blue-c) with immersive perception at full-scale or near full-scale design artifacts are studied as the inspiration of this research. Designers identify what kinds of influence they had on the design of client's interior space and to what extent they are aware that they can design and influence their perception. An over-sized display environment with direct manipulation interface is developed for evaluation platform.
keywords Virtual environments, Collaborative design
series DDSS
last changed 2006/08/29 12:55

_id caadria2006_133
id caadria2006_133
authors MARY LOU MAHER, MIKE ROSENMAN, KATHRYN MERRICK, OWEN MACINDOE, DAVID MARCHANT
year 2006
title DESIGNWORLD: AN AUGMENTED 3D VIRTUAL WORLD FOR MULTIDISCIPLINARY, COLLABORATIVE DESIGN
doi https://doi.org/10.52842/conf.caadria.2006.x.g2k
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 133-142
summary Large design projects, such as those in the AEC domain, involve collaboration between designers from many different design disciplines in varying locations. Existing tools for developing and documenting designs of buildings and other artifacts tend to focus on supporting a single user from a single discipline. This paper introduces DesignWorld, a prototype system for enabling collaboration between designers from different disciplines who may be in different physical locations. DesignWorld consists of a 3D virtual world augmented with a number of web-based communication and design tools. DesignWorld uses agent technology to maintain different views of a single design in order to support multidisciplinary collaboration and address issues such as multiple representations of objects, versioning, ownership and relationships between objects from different disciplines.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ddss2006-pb-271
id DDSS2006-PB-271
authors Ji-Hyun Lee and Huai-Wei Liu
year 2006
title The Art of Communication: a Collaborative Decision-Making System among Different Industrial Design Stakeholders - The case of the company ASUS
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 271-288
summary Collaboration benefits the process of complex design. However, there are many communication problems among different stakeholders in the domain of industrial design, because the situation of communication and decision-makings for stakeholders is so complicated. To deal with the complexity requires both a web-based collaborative system to communicate and share information immediately, and a multi-agent system (MAS) integrated with KW architecture to possess different levels of competence at performing a particular task. The goal of our system is to integrate a variety of representational methods of transferring knowledge and to communicate among different stakeholders using a single platform. To demonstrate our proposed concepts, we focus on a prototype system for notebook design for the company ASUS, a leading notebook manufacturer based in Taiwan.
keywords Web-based collaborative system, Computer-supported cooperative work, Decision-making, Multi-agent system, Knowledge warehouse
series DDSS
last changed 2006/08/29 12:55

_id 2006_234
id 2006_234
authors Donath, Dirk and Christian Tonn
year 2006
title Complex design strategies using building information models - Evaluation and interpretation of boundary conditions, supported by computer software
doi https://doi.org/10.52842/conf.ecaade.2006.234
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 234-243
summary The choice of a chord and its execution should be regarded as a must and not left to arbitrary wish or superficial speculation. (Johannes Itten, 1961) The paper describes a modular concept for the IT-support of planning practice using BIM (Building Information Modelling) and a parameterized building model. The platform used is the modularized software concept for architectural planning in existing built contexts (prototype software FREAK). The current progress in the development of a reasoned support of planning tasks is described in this paper in more detail. The system consists of a series of software prototypes which are linked to the BIM, utilize the specific data within and demonstrate the value of a consistent and extendable CAD-model. The “Colored Architecture” software prototype is one such design-support module of the software platform and enables the designer to experiment with the parameters colour, light and materials in architectural space. This module supports experimentation, assessment and realization of colours and materials in the architectural design process on a new quality. For instance, the integration of “live radiosity” light simulation allows a qualified and interactive assessment and evaluation of colours and materials in near-real lighting conditions. The paper also details further software prototypes, modules and concepts including building surveying and the design of self-supporting domed structures.
keywords Design; Parameterized Building Information Modelling; Plausibility; Planning Support; Colour, Material and Light Design
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2006_e172c
id sigradi2006_e172c
authors Donath, Dirk and González Böhme, Luis Felipe
year 2006
title A Constraint-Based Building Bulk Design Support
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 278-282
summary We introduce an architecture practice-oriented implementation strategy of constraint-based methods called BDS (Building Bulk Design Support) to supporting bulk analysis during the architectural programming phase. We examine the optmization problem of site coverage and building massing according to a set of standard planning and zoning regulations, and try a problem solving approach based on the paradigm of constraint satisfaction problems. The case study, which is focused on the paticipatory planning of very low-income dwellings within the Latin American context, serves as testbed for a prototypical application of the adopted methodology. The BDS constitutes a novel approach on computer-aided bulk analysis, regarding this particularly relevant context of application. In the case of participatively planned low-income housing projects, efficiency regarding time and cost of planning directly affects dwellers’ quality of life, whereas elementary programming tasks such as bulk analysis lack appropriate state-of-the-art technological support. Traditional architectural planning methods demand a large domain-specific knowledge base and skillful planners. A planning process, which is mainly driven by the formulation of planning-relevant constraints and sets of solution alternatives, suggests to avoid architects’ traditional procedure of: 1. Create an (yet not necessarily valid) instance of the eventual design solution by directly choosing specific values for its shape parameters. 2. Evaluate its validity by confronting the designed model to a set of applicable constraints, which have to be satisfied. Instead, the constraint-based design methodology poses a search procedure that operates in a space of pertinent constraint sets. A computer-aided interactive search procedure to find more valid design solution alternatives in less time and with less effort is particularly qualified to supply efficient support for participatory planning activities carried out between dwellers and planners. The set of solutions for a building-bulk design problem is constrained by both a large complex system of planning and zoning regulations and the geometry of the eventual design solution itself. Given a considerable amount of such regulations, a regular size geometric constraint satisfaction system proved to be capable of providing a highly efficient, interactive modeling and evaluation tool for the formulation in real time of valid solution alternatives for an ordinary building-bulk design problem. A BDS implementation will constitute one system module of a larger integrated system model called Esther. A BDS tool shall interact with other functional modules, like e.g. the FLS (Floor plan Layout Support), which also uses constraint-based design methods.
keywords constraint-based design; bulk analysis; participatory planning; low-income housing; design theory; design proces
series SIGRADI
email
last changed 2016/03/10 09:50

_id 2006_342
id 2006_342
authors Lyon, Eduardo
year 2006
title Component Based Design and Digital Manufacturing - A DfM Model for Curved Surfaces Fabrication using Three Axis CNC Router
doi https://doi.org/10.52842/conf.ecaade.2006.342
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 342-350
summary Through the use of design for manufacturing (DfM) method and looking at the relations between its potential application in architectural production and its implementation using digital manufacturing technologies, we analyze building construction processes and explore, in more detail curved surface fabrication using two dimensional cutting and three dimensional milling processes. Afterwards a DfM model for curved surfaces fabrication using three-axis computer numerical control (CNC) router is proposed. The proposed DfM model relies fundamentally in two supporting factors; the implementation of design heuristics that integrates production knowledge and the availability of some design related to production evaluation metrics. Subsequently, we test and refine the model using structured design experiences. This was accomplished by capturing new design heuristics and detecting useful evaluation metrics for production. In the final part of the research, a refined DfM model was tested in a component design case study. The case study is based on producing a curved surface module on wood for an existing proprietary component based wall system. As a summary, we conceptualize from this top-down development approach to create a design for manufacturing model that integrates design and construction in architecture, based on three possible applications fields: Design processes improvement, building production process improvement, CAD-CAM tools development. Our purpose is to provide better foundational constructs and approaches for integrating design with manufacturing in architecture.
keywords Design for Manufacturing; Design Cognition; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:59

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id bsct_tsiopoulou
id bsct_tsiopoulou
authors Tsiopoulou, Chamaidi
year 2006
title Calibrated Sky Luminance Maps for Daylight Simulation
source Vienna University of Technology; Building Science & Technology
summary Building design and control applications can benefit from daylight simulation. Sky models help to model the sky conditions and predict the availability of daylight in indoor environments. Sky luminance is changing according to the weather, the season of the year and the time of the day, therefore it is difficult to create an accurate sky model. The simplified models that are currently used for computational simulation do not take into account these constant changes. It is important to test if there is the possibility of creating a sky model that approaches the characteristics of real sky and provides the architects with more precise daylight predictions. As past research has demonstrated, relatively low-cost sky luminance mapping via digital imaging can provide an alternative to highly sophisticated sky scanners and support the provision of information on sky luminance distribution patterns on a more pervasive basis. The aim of this research is first to explore the potential of deriving sky luminance distribution maps based on digital imaging and then to test their efficiency for the prediction of indoor daylight. A comparison is made between the predictions based on existing sky models (CIE Standard Skies and Perez All-weather sky) and the camera-based sky model. Thus, the effects of the selection of the sky model on indoor daylighting prediction are explored. A set of measurements were performed at the roof of the TU Vienna in order to obtain the necessary data. The horizontal illuminance levels due to 12 sky sectors were measured with the help of a sky monitoring device. A scale (1:5) model of an architectural space was used to measure the indoor illuminance values with the help of three sensors. At the same time, images of the sky were obtained with the help of a digital camera with a fish-eye converter. Luminance values were derived from the images and four calibration methods were used to generate accurate sky luminance distribution maps. These variously calibrated luminance values were then compared with the corresponding photometric measurements. Finally, the application of a digitally derived sky model based on the best calibration method was compared with the other two sky models toward the prediction of indoor illuminance levels using the case of the scale model. The results demonstrated that the camera-based sky model was more reliable than the other two sky models. It was concluded that digital imaging combined with parallel photometric calibration can provide a valuable means for a real-time generation of sky luminance maps. Detailed sky luminance models can be generated and their application can increase the predictive accuracy of the computational daylight prediction tools. Moreover, the reliability of daylight simulation can be increased toward supporting the design process and the operation of daylighting systems in buildings.
keywords Daylight simulation; sky luminance mapping; digital imaging; sky models.
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2006/07/02 22:33

_id caadria2006_091
id caadria2006_091
authors BAUNI HAMID, YEHUDA E. KALAY, YONGWOOK JEONG, EMELIE K.F. CHENG
year 2006
title INVESTIGATING THE ROLE OF SOCIAL ASPECTS IN COLLABORATIVE DESIGN
doi https://doi.org/10.52842/conf.caadria.2006.x.r4p
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 91-100
summary This paper basically describes part of our current research on the role of social aspects in collaborative design. Most part of this research, up until this stage, is theoretical research, which is our attempt to imply theories in social psychology in collaborative design. In order to step further towards empirical research we needs tool for the investigation. Discussion on this paper is built upon our attempt to develop this tool. Considering this context the discussion can be observed into two sections. First part is basically summary of our theoretical research to this point. Based on these theoretical backgrounds we discuss our research on defining and developing the tool in the second part. The tool is basically a prototype of design process representation system which is expected to be used as our tool for next stages of this research, investigating the role of social aspect in the real practice of collaborative design.
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2006_e048c
id sigradi2006_e048c
authors Beck, Mateus Paulo; Brener, Rafael; Giustina, Marcelo and Turkienicz, Benamy
year 2006
title Light and Form in Design – A Computational Approach
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 254-257
summary Shape perception is strongly influenced by the reciprocal relation between light and form. Computational applications can increase the number of design alternatives taking into account possible variations in the relation between light and form. The aim of this study is to discuss a pedagogical experience carried out with 5th semester architectural students, based on a series of exercises prior to the term project. The exercises were concerned with the relation between light and form from an aesthetical point of view and should be understood as examples for the use of computers as tools to creatively accelerate the process of design and learning. The paper is divided in five parts. The first one describes the conceptual background for the exercises, a descriptive method for the identification of light effects in architectural objects based on ideas of shape emergence. The exercises’ methodology is explained in the second part, referring to the use of computational applications in 3-dimensional modeling, material and light simulation. The methodology includes different phases: –creation of bi-dimensional compositions according to symmetry operations; –creation of a minimal living space assigning functions to spaces originated from the former composition; –analysis of the impact of light on the form and spaces created; –alteration of form and materials creating new light effects considering the functions related to the spaces. The exercises alternate work in computational environment in two and three dimensions with the use of mockups, lamps and photography. In the third part the results –student’s design steps– are described. In the fourth part the results are analyzed and some conclusions are outlined in the fifth and last part. The use of emergent forms combined with computational tools has proved to be an effective way to achieve an accelerated understanding of the impact of light on forms as demonstrated by the evolution of the students work during the term and by their final results concerning the term project.
keywords Architectural Design; Lighting; Design Simulation; Virtual Environment
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia06_148
id acadia06_148
authors Cabrinha, Mark
year 2006
title Synthetic Pedagogy
doi https://doi.org/10.52842/conf.acadia.2006.148
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 148-149
summary As tools, techniques, and technologies expand design practice, there is likewise an innovation in design teaching shifting technology from a means of production and representation to a means of discovery and development. This has implications on studio culture and design pedagogy. Expanding the skills based notion of digital design from know-how, or know-how-to-do, toward know-for, or knowledge-for-action, forms a synthetic relationship between the skills necessary for action and the developing motivations of a young designer. This shifts digital design pedagogy to a medium of active inquiry through play and precision. As digital tools and infrastructure are now ubiquitous in most schools, including the increasing digital material exchange enabled through laser cutters, CNC routers, and rapid prototyping, this topic node presents research papers that engage technology not simply as tools to be taught, but as cognitive technologies which motivate and structure a design students knowledge, both tacit and explicit, in developing a digital and material, ecological and social synthetic environment. Digital fabrication, the Building Information Model, and parametric modeling have currency in architectural education today yet, beyond the instrumentality of teaching the tool, seldom is it questioned what the deeper motivations these technologies suggest. Each of these tools in their own way form a synthesis between representational artifacts and the technological impact on process weaving a wider web of materials, collaboration among peers and consultants, and engagement of the environment that the products of design are situated in.If it is true that this synthetic environment enabled by tools, techniques, and technologies moves from a representational model to a process model of design, the engagement of these tools in the design process is of critical importance in design education. What is the relationship between representation, simulation, and physical material in a digitally mediated design education? At the core of synthetic pedagogies is an underlying principle to form relationships of teaching architecture through digital tools, rather than simply teaching the tools themselves. What principles are taught through teaching with these tools, and furthermore, what new principles might these tools develop?
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_690
id 2006_690
authors Chuen-huei Huang, Joseph and Robert Krawczyk
year 2006
title i_Prefab Home - Customizing Prefabricated Houses by Internet-Aided Design
doi https://doi.org/10.52842/conf.ecaade.2006.690
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 690-698
summary The paper demonstrates a web-based system for use in the area of prefabricated housing to assist the customer and architect in selecting appropriate building components. By collecting and evaluating client’s requirements with web technology, a methodology can be developed that can generate design options based on the client’s needs and available modular components in the market, and simulate the final design before beginning manufacturing. In this proposed model, a process of providing mass-customized prefabricated housing based on computer-aided design and a web-based product configuration system will be presented. How prefabricated housing design can be evolved from a mass repetitive production level to a mass customization level to meet variability and personality is the primary issue to be explored in this research.
keywords Web-based design; clients input; mass customization; prefabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2006_545
id caadria2006_545
authors DIETRICH ELGER, ANDREAS DIECKMANN, PETER RUSSELL, THOMAS STACHELHAUS
year 2006
title THE INTEGRATED DESIGN STUDIO: A VIEW BEHIND THE SCENES:Liquid Campus 3
doi https://doi.org/10.52842/conf.caadria.2006.x.v4r
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 545-548
summary Over 10 months ending in July 2005, architecture students from Aachen, Karlsruhe and Weimar took part in a design studio that differed significantly from other studios in that the result of the studio was a 1:1 realisation of the design. This is part of an evolution of the virtual faculty of architecture “Liquid Campus”, founded in 2001, which has seen the complexity of the projects steadily rise and this continued in the Project “Ein Fest: Ein Dach”. The integrated studio is arranged to encourage an active, economic and transparent learning process, which encompasses design, communication and cooperation issues. The stated goal at the beginning of the two-semester process is to build and although only a few of the ideas are realised, all participants are involved in the realisation. In this case, the project was to create “roofs” for an open-air concert for 200,000 people in Karlsruhe, Germany. The planning was carried out using the Netzentwurf platform, with which the authors have several years experience.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 2006_810
id 2006_810
authors Dokonal, Wolfgang and Knight,Michael
year 2006
title Pen or PC? - Is Sketching essential to architectural design?
doi https://doi.org/10.52842/conf.ecaade.2006.810
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 810-817
summary This paper reports on an ongoing student architectural design project that is investigating the differing effects of the use of PC’s or Pens in the design process. We are interested to see whether designing wholly on the computer with a volume modeling software would produce differing results to a traditional design process with a strong basis in 2D sketching. To minimize the influence of the participants previous experience in either the use of PC’s or the pen, we have been working with very young students that have not yet gone through a traditional training on architectural design and CAAD software. This is one of the key aspects of our experimental procedure. We have found that recent software developments in the field of CAAD clearly have and will influence the way architects design and brings the computer as a design tool to the “normal architect”. Until very recently the computer was seen as a design tool almost solely for “computer geeks” in the profession, the majority of architects still using it mainly as a drafting machine or to produce visualizations of their projects after a more ‘conventional’ design process had finished. It is now very clear to us that the ongoing change in technology will have a profound effect on the way all of us will work in future undertaking architectural design. It is an important question for every school of architecture what effect these developments will have on our teaching methods and the curricula. We use the above mentioned ongoing educational project to find out about the benefits and risks of using the computer as a design tool for first year students.
keywords Early Design stages; Collaborative Design; Sketching
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2006_paper9
id ascaad2006_paper9
authors Huang, Joseph, C. H.; Robert J. Krawczyk and George Schipporeit
year 2006
title Integrating Mass Customization with Prefabricated Housing
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary The paper will give an overview of mass customization concepts and how they can be applied to prefabricated modular housing. By collecting and evaluating client’s requirements with web technology, a methodology can be developed that can generate design options based on the client’s needs and available modular components in the market, and simulate the final design before beginning manufacturing. In this proposed model, a process of providing masscustomized prefab housing based on computer-aided design and a web-based product configuration system will be presented.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_014
id 2006_014
authors Iordanova, Ivanka; Lorna Heaton and Manon Guité
year 2006
title Architectural Design Spaces and Interpersonal Communication-Changes in Design Vocabulary and Language Expression
doi https://doi.org/10.52842/conf.ecaade.2006.014
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 14-21
summary This paper addresses communication during the design process and the mutations it may undergo depending on the medium of design. Three experimental observations were held with students in the context of architectural digital design studios. Each of them was performed when the students were working on a design problem, in groups of two or three, with different design mediums: cardboard mock-up or modeling software with one or two mice used for interaction with the computer. The methodology used for analysing the recorded video and graphical data is based on previous research work in the domains of collaborative communication as well as in the domain of design. It combines purely qualitative interpretation with graphical linkographic analysis. A software prototype was developed in order to allow for an interactive category assignment, exploration and interaction. Gesture, verbal language and design space are studied in order to determine their dependence on the medium and the eventual impact this might have either on the design process or on the object being designed.
keywords Design communication; education; gesture
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2006_081
id caadria2006_081
authors JÖRG RÜGEMER
year 2006
title WEB BASED DESIGN AND COMMUNICATION PEDAGOGY : Group pedagogy and the implementation of web-based technologies within the design process
doi https://doi.org/10.52842/conf.caadria.2006.x.p2s
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 81-90
summary The success of the international Zollhof project in Düsseldorf, Germany, in which virtual communication played a crucial role, was the catalyst for introducing interdisciplinary digital methods in the field of teaching. The firm of Frank O. Gehry and Associates, Santa Monica, California, served as an initial field of experimentation in order to bring together a heterogeneous group of project partners to participate in the design and construction phases of the Zollhof project. The design development, construction document, and construction phase was considerably enhanced by the employment of digital media as a communication and information tool. Parallel to the design process in the office in Santa Monica, a line of information flow and management had to be established to connect the local design team with consultants that were located in Europe and specifically in Germany. This line of communication required the team to send precise descriptions of project steps to the participants abroad, as well as receiving and processing a flow of responses returning to the Santa Monica office in very short intervals. By advancing and documenting each design and development step, the project progression was clearly documented by the project teams and thus understandable to everybody involved. The process demanded a highly articulated project description in text and images that were refined and exchanged daily. This helped to strengthen the cooperation between the design team and the project consultants and started to dissolve the role of the prime architect or designer toward a more team-related and democratic structure. All participants had quick access to all necessary information, which set aside the vertical hierarchy in favor of transparent communication tools and platforms.
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_302421 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002