CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id acadia06_230
id acadia06_230
authors Anzalone, Phillip
year 2006
title Synthetic Research
doi https://doi.org/10.52842/conf.acadia.2006.230
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 230-231
summary Synthetic Research insinuates a relationship of a meticulous process of discovering truth contradicted against a fabricated, as in concocted, reality. It is important to recognize the logical aspect of synthetic when examining what synthetic research can provide for architectural discourse. Synthesis contrasts with analysis in that it’s primary methods involve recourse to experience; it is experience that is at the heart of synthetic research. The synthesis of theory, architectural constructions, technological artifacts and computational techniques requires experiencing the results of experimentation. Synthetic digital architecture necessitates a discovery process incorporating creation that allows for experience, be it virtual reality, full-scale prototyping or spatial creations; provided experience is a truthful one, and not disingenuous and thereby slipping into the alternate definition of synthetic.Research’s experimental arm, as opposed to the analytic, relies on tinkering - implying the unfinished, the incomplete, the prototype. Examples of this are everywhere. Computer screenshots are a strikingly literal example of synthetic research when used as a means of experiencing a process. Performance mock-ups of building assemblies are a method of synthetic research in that one experiences a set of defined performances in order to discover and redefine the project. The watchmaker craft is an exercise in research/experimentation where material properties are inherent in function and aesthetics; consider how the components interact with the environment - motion, gravity, space-time, temperature. Efficiency at this point is predominantly structural and physical. Decorative or aesthetic elements are applied or integrated in later iterations along with optimization of performance, marketing and costs.What is a architectural research? How can research synthesize the wide range of possibilities for the trajectory of architecture when engaged in digital and computational techniques? The goals, techniques, documentation and other methods of research production have a place in architecture that must be explored, particularly as it related to computation. As in other fields, we must build a legitimate body of research whereby others can use and expand upon, such that digital architectures evolve in innovative as well as prosperous paths.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac20064408
id ijac20064408
authors Ataman, Osman; Rogers, John; Ilesanmi, Adesida
year 2006
title Redefining the Wall: Architecture, Materials and Macroelectronics
source International Journal of Architectural Computing vol. 4 - no. 4, pp. 125-136
summary As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of a new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology of its own.
series journal
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000004/art00009
last changed 2007/03/04 07:08

_id 2006_868
id 2006_868
authors Becker, Mirco
year 2006
title Branches and Bifurcations - Building a framework for modeling with isosurfaces in Generative Components
doi https://doi.org/10.52842/conf.ecaade.2006.868
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 868-873
summary An isosurface is a three-dimensional representation of a constant value of a field function within a given volume. They are normally used in computer graphics to visualize data in fluid dynamics, medical imaging, geophysics, and meteorology. The advantage of isosurfaces is that they can represent all sorts of topologies. That makes them a perfect tool for modeling, branching, forking, and bifurcating objects with smooth transitions. As they work of a field function, the surface is implicit, the polygonization an approximation. This is a good base for coupling performance with precision. The task was to define a set of handles to change and model an isosurface. It had to happen through the modeling of the field function in a way that is rather intuitive but without giving up the precision one is used to have from standard NURBS/BREP modeling. The paper shows how a modeling framework for isosurfaces is implemented as a plug-in for Bentley Systems Generative Components allowing an intuitive way of exploring design variations. The implementation is illustrated with a proof of concept showing a sketch design.
keywords Isosurface; Polygonization; Scalar field; Marching Cube; Generative Components
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia06_440
id acadia06_440
authors Bell, Brad
year 2006
title The Aggregate of Continuum
doi https://doi.org/10.52842/conf.acadia.2006.440
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 440-454
summary The Traversable Matrix (Fig. 1.) illustrates the iterative fragments that comprise the continuum of exploration for a digital aesthetic and digital tectonic. These non-hierarchical fragments operate as footholds across a larger tessellated landscape of current digital design explorations. In seeking an organizational strategy, we attempt to move laterally across a variety of examples, texts, and illustrations. Each short excerpt is a partial architecture illustrating deeper issues in the current discussion of digital fabrication. Though counter to conventional academic inquiry, the associative approach can help frame the matrix; the synthetic landscape traversed becomes less linear, less framed but no less interconnected and cohesive. The patterning of complex geometries, the production of ornament, the leveraging of digital fabrication against standard forms of material and construction practices, and the acute emphasis on surface all serve as the aggregate to a broader spectrum of architectural thinking and architectural making.Introduction: The Traversable Matrix
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_290
id 2006_290
authors Cenani, Sehnaz and Gulen Cagdas
year 2006
title Shape Grammar of Geometric Islamic Ornaments
doi https://doi.org/10.52842/conf.ecaade.2006.290
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 290-297
summary Shape grammars are the algorithmic systems used to analyze existing designs or create new ones. In spite of using text or symbols to express abstract representations, shape grammars aid to create novel designs through computational effort with shapes and rules. Many probabilities of rule selections and applications of these rules may generate emergent design solutions or create new design objectives. This paper aims to present the characteristics, shape grammar rules and historical background of geometrical ornaments in Islamic culture and to point out the possibilities of mathematics of symmetry. The knowledge presented in this paper can be used to generate new depictions and to gain new application areas like typography, wallpaper, landscape, façade design, tiling, jewelry, and textile designs. Even, these types of shape grammar studies can be used to open a novel approach as in Jean Nouvel’s “Arab World Institute” in Paris. The role of shape grammar analysis of geometrical Islamic ornaments explained in this paper is to increase the efficiency of architectural design education by facilitating the formal understanding of historical patterns. Novel use of shape grammars in education can enrich the designer’s ability to generate original designs. In this paper variants of Islamic ornaments are created with a CAAD program. A selected geometrical bezeme (ornament) from Islamic ornamental design is generated by encoding with a computer programming language. According to the generated bezeme, interaction scenario is as follows: Computer has the main control over grammar application. Only, some of the rules can be selected by the user. Varieties of this ornament are generated randomly through their line weight, line colors, filling types and filling colors. The shape grammar rules outlined in this paper are simple, but the resulting figures can be very inspiring. Furthermore, the endless potential for future design innovations is unlimited.
keywords Computer-generated geometrical design; shape grammar rules; geometrical Islamic ornaments; Islamic patterns
series eCAADe
email
last changed 2022/06/07 07:55

_id 2006_644
id 2006_644
authors Chen, Yu-Shu and Hong-Sheng Chen
year 2006
title Tangible User Interface Design for Lower Limb Disabled Children - A composite function of toy accompanying children at home
doi https://doi.org/10.52842/conf.ecaade.2006.644
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 644-648
summary This study describes the requirement of lower limb disabled children. Lower limb disabled children that limit their movement in nowadays environment. Ubiquitous computing concept is more popular now. This research uses tangible user interface to be a toy accompanying children at home, combine ubiquitous computing concept to help them control the electronic equipment so that disable children can earn their lives.
keywords Disable; disability; tangible; user interface;children; ubiquitous computing
series eCAADe
email
last changed 2022/06/07 07:54

_id 2006_302
id 2006_302
authors Dounas, Theodoros and Anastasios M. Kotsiopoulos
year 2006
title Generation of alternative designs in architectural problems using Shape Grammars defined with animation tools - A computer implementation of shape grammars using modelling and animation software
doi https://doi.org/10.52842/conf.ecaade.2006.302
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 302-307
summary We present a model of generation of alternative designs to selected architectural and spatial configurations of small complexity. Specifically we present a production pipeline of architectural / spatial configurations using the context of animation and time based design tools. Our model consists of time and space design constraints of boundaries / objects affecting a given architectural design, thus producing an alternative solution for every timeframe of the animation cycle. The alternative designs vary from the original according to their temporal and/or spatial distance from the original object on the animation time-line. The constraints placed upon the objects , used as actuators of Shape Grammars, are defined informally by the user/designer while their influence can vary according to time, speed, location, configuration of the object and/or the constraint itself. However the constraints further function as formal rules for the Shape Grammar creation so that our model tries to predict ahead of time the emergence of alternate designs. The employ of animation tools [shape driven curves, speed and time-line functions,parent child relationships] in the shape generation of our model empowers the user/designer to configure whole sets of shapes and designs interactively and without the need to define every solution independently. Simultaneously, a different, time-focused view of our model describes its use on designs that develop different configurations over time. Thus a duality of our model is established: either the animated schema may be a sum or family of various designs or the animated time-line represents a single design which changes over time. Finally the possibility of an automated analysis of every design is discussed, using Space Syntax diagrams so the designer can quickly evaluate the various spatial configurations produced by a single original.
keywords shape computation; shape grammar computer implementation; alternative designs; animation software techniques
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia06_251
id acadia06_251
authors d’Estrée Sterk, Tristan
year 2006
title Shape Change in Responsive Architectural Structures: Current Reasons & Challenge
doi https://doi.org/10.52842/conf.acadia.2006.251
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 251-260
summary Shape control within architectural structures is a natural extension to the practice of engineering and architectural design. The knowledge needed for it’s development builds upon two well understood foundations: 1) the long existing knowledge that building performance and function are intimately connected to the shape of built spaces; and 2) the relatively new idea that embedded computational systems may be employed to control devices in useful and beautiful ways. When combined, each type of knowledge can be used to further architecture and engineering at both theoretical and methodological levels. Structural shape control is of major interest within architecture because it is the primary ingredient needed to produce building envelopes that change shape. Structural shape control also currently represents a major technological and methodological stumbling block for architects, posing many challenges that have theoretical and practical origins. Theoretically, responsive architectural structures demand a re-evaluation of existing notions of space making. Practically, these systems demand a re-evaluation of construction and design methodologies across both engineering and architectural practice.
series ACADIA
type normal paper
email
more admin
last changed 2022/06/07 07:55

_id acadia06_068
id acadia06_068
authors Elys, John
year 2006
title Digital Ornament
doi https://doi.org/10.52842/conf.acadia.2006.068
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 68-78
summary Gaming software has a history of fostering development of economical and creative methods to deal with hardware limitations. Traditionally the visual representation of gaming software has been a poor offspring of high-end visualization. In a twist of irony, this paper proposes that game production software leads the way into a new era of physical digital ornament. The toolbox of the rendering engine evolved rapidly between 1974-1985 and it is still today, 20 years later the main component of all visualization programs. The development of the bump map is of particular interest; its evolution into a physical displacement map provides untold opportunities of the appropriation of the 2D image to a physical 3D object.To expose the creative potential of the displacement map, a wide scope of existing displacement usage has been identified: Top2maya is a scientific appropriation, Caruso St John Architects an architectural precedent and Tord Boonje’s use of 2D digital pattern provides us with an artistic production precedent. Current gaming technologies give us an indication of how the resolution of displacement is set to enter an unprecedented level of geometric detail. As modernity was inspired by the machine age, we should be led by current technological advancement and appropriate its usage. It is about a move away from the simplification of structure and form to one that deals with the real possibilities of expanding the dialogue of surface topology. Digital Ornament is a kinetic process rather than static, its intentions lie in returning the choice of bespoke materials back to the Architect, Designer and Artist.
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia06_270
id acadia06_270
authors He, Weiling
year 2006
title “Flatness” through Camera The Implications of Camera Movement in the Digital Reconstruction of Diamond Museum
doi https://doi.org/10.52842/conf.acadia.2006.270
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 270-277
summary In architectural design, explorations using digital modeling and rendering tools do not stop at producing 3D geometries and representations. We need to interrogate the spatial implications of the functions these tools provide. One of the questions we need to ask is, is it possible to foreground architectural concepts “within” the mechanisms of these tools? This study focuses on one single function in 3D VIZ camera movement. The objective is to examine the spatial implications of this function in the computerized architectural space of Diamond Museum. Camera movement is studied in six variables: distance, point of view, camera angle, framing, duration and travel speed and sequencing. Further, the architectural concept of flatness will be understood through the movies generated within the space of Diamond Museum.
series ACADIA
email
last changed 2022/06/07 07:49

_id 2006_298
id 2006_298
authors Ireland, Tim
year 2006
title Form follows function: Activity defines function, gesticulates space
doi https://doi.org/10.52842/conf.ecaade.2006.298
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 298-301
summary The foremost principle of this work is that the base level of architectonic form is spatial, and that the array of activities relative to the practice of habitation and their associational parameters to each other determine spatial boundaries, which might be uncovered, to define form. The array of activities, which define a particular ‘mode’ of habitation, will vary according to particular functions therefore defining building types. This might also be extended to the individual, in the case of an apartment or house in that the personal activities of an individual might be utilized to define custom form. Therefore defining a place of habitation, which reflects the individual qualities of that individual and responds to their personal mode of living, character and spatial requirements. Computationally I suppose space defined through an array of activities represented in 3D, and that the topology of activities defined geometrically through the application of an array of self-organizing activity maps for the morphology of space, to define form, relative to user/activity associations and context.
keywords Emergence; SOM’s; Activities; Space
series eCAADe
email
last changed 2022/06/07 07:50

_id 2006_556
id 2006_556
authors Johansson, Troels Degn
year 2006
title Pictorial Genre and Discourse of Future in Digital Visualization of Architecture and Planning
doi https://doi.org/10.52842/conf.ecaade.2006.556
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 556-559
summary This paper seeks to outline a theory of pictorial genre in discourses of future at play in digital visualisation of architecture and planning for communicative purposes. It claims that pictorial genre is crucial to the way we understand depictions of future in architectural and planning communication. Accordingly, professionals dealing with communication matters in architecture and planning should yield for a sufficient awareness of the function of pictorial genre—not least as concerns the adoption of digital technologies for the modelling and presentation of spatial matters. This is urgent since these technologies (primarily Geographic Information Systems, GIS) and software systems for spatial modelling and presentation do not include any aspect of pictorial genre in their current state of development.
keywords Visualization; planning information; pictorial representation; genre; planning
series eCAADe
email
last changed 2022/06/07 07:52

_id ddss2006-hb-309
id DDSS2006-HB-309
authors John S. Gero and Udo Kannengiesser
year 2006
title A Framework for Situated Design Optimization
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 309-324
summary This paper presents a framework for situated design optimization that expands the traditional view of design optimization. It is based on the notion of interaction providing the potential for modifications of various aspects of the optimization process: problem formulation, the optimization tool, the designer and ultimately the result. In contrast to other approaches, these modifications can drive further interactions within the same optimization process. We use parts of the situated function-behaviour-structure (FBS) framework as an ontological basis to describe the effects of intertwined interactions and modifications on the state space of ongoing optimization processes.
keywords Design optimization, Situatedness
series DDSS
last changed 2006/08/29 12:55

_id caadria2006_503
id caadria2006_503
authors KAGA, ATSUKO; ATSUSHI MIYAGAWA, MASAHIRO KAWAGUCHI, WOOKHYUN YEO, TOMOHIRO FUKUDA
year 2006
title LANDSCAPE EVALUATION SYSTEM USING A 3D SPACE MODEL AND A CELLULAR PHONE WITH GPS CAMERA
doi https://doi.org/10.52842/conf.caadria.2006.x.g8f
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 503-512
summary In recent years there has been a demand that local residents take part in the planning of environmental designs from the initial stages. On the issue of understanding the local environment, it is desirable to accumulate and share information and to enable it to be reused. To this end, attention has been focused on the cellular phone which can provide position information and picture information in addition to serving as a tool of general communication. For several years now it has been increasingly common for cellular phones to be equipped with an E-mail function, a web browsing function, a camera function, a GPS function, etc. Using such cellular phones, it will become possible to quickly accumulate local information with detailed picture information and position information. On the other hand, it is desirable to look at and understand an environment interactively from various points of view from the initial stage of a project. For that purpose, examination using 3D space which makes real-time simulation possible is required. In this research, using a cellular phone with a GPS camera, scene image data is collected with the aim of constructing a local scene evaluation system which can perform a picture display using a 3D space model.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:50

_id 2006_714
id 2006_714
authors Kona, Silika Rahman and Saleh Uddin
year 2006
title Movement in Architecture - An Analytical Approach Towards Organic Characteristics
doi https://doi.org/10.52842/conf.ecaade.2006.714
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 714-719
summary Nature is the fundamental and recurring inspiration of organic architecture. Living organisms, both in their outward forms and in their inner structures, offer endless ideas and concepts for design. Organic architecture works with metamorphosis (the process of growth and change), the notion of “design from within”. Why should architecture be lifeless and static? Here, Movement, a unique quality of living organism is used to contribute to architecture. We cannot make a new life but we can take the characteristics to make changes in our environment, seeking not to imitate nature’s appearance, but instead to imaginatively apply its profound principles. The focus of this paper is to examine and categorize the different kinds of movement that exist in nature, understanding how their purpose can be effectively used in architecture. The topic explores techniques of living organisms used for function and defense and discusses possible implementation in architecture. Movement has the potentiality to introduce flexibility, ecological efficiency and building defense through deformable, transportable, shape shifting and morphing forms.
keywords Organic Characteristics; Movement
series eCAADe
email
last changed 2022/06/07 07:51

_id 2006_874
id 2006_874
authors Lee, Ming-xian and Ji-Hyun Lee
year 2006
title Form, Style and Function - A Constraint-Based Generative System for Apartment Façade Design
doi https://doi.org/10.52842/conf.ecaade.2006.874
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 874-883
summary This paper describes the development of a constraint-based generative system (FSF system) to support the design of middle and high-rise apartment façades from architectural plans. Floor plan and façade designs are heavily interrelated, and, sometimes, the plan constrains the façade design during the design process. This relationship lends itself to apply constraint-based systems and we have designed the system to connect intelligently between apartment plan and façade. In our system, we define constraints into three categories: structural form, architectural style and function. We use genetic algorithm to generate plausible alternatives quickly and augmented by a constraint-based system, façades can be generated and modified much more easily in terms of real-time visual feedback for checking violence of the constraints and of dealing with updates smoothly through intelligent connecting plans to façades.
keywords Generative system; Plan-to-façade; Constraint-based system; Intelligent CAD; Style description
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac20064103
id ijac20064103
authors Loveridge, Russell; Strehlke, Kai
year 2006
title The Digital Ornament using CAAD/CAAM Technologies
source International Journal of Architectural Computing vol. 4 - no. 1, 33-49
summary New digital technologies are challenging the traditions of the architectural design methodology, the relationship between context and design, and the dependency on skilled workmanship for the fabrication of beautiful and complex architecture. Intellectually, applications of digital technologies are also allowing for the reinvestigation, reinterpretation, and redevelopment of historical concepts, theories, and skills[1]. Our focus of ornament in this paper is presented as a constrained architectural testing ground, a reduced issue that still addresses the primary issues of geometry, aesthetics, individualism, and the transferal of design to materiality. Our work on digital ornament combines the traditionally intuitive skills of geometric & graphic manipulations with easily edited input (variables and digital images), control through parametric programming, and automated output (CNC manufacturing). The combination of these processes allows for efficient diversity and uniqueness of design, while also compensating for the increasing cost and declining availability of skilled artisans for the physical fabrication. The presented projects in teaching, research, and professional activities demonstrate our ongoing experiments with new technologies of programmed surface modeling and computer numerically controlled manufacturing (CNC manufacturing). This work has been incorporated in real world projects, both in the revitalization historic buildings, and in new applications of ornament in contemporary architecture.
keywords 3D Modeling; Parametric Design; Image Processing; Design Education; Cam
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00004
last changed 2007/03/04 07:08

_id acadia06_292
id acadia06_292
authors More, Gregory
year 2006
title Making Space Content Specific Interactive Architectures for Information Presentation
doi https://doi.org/10.52842/conf.acadia.2006.292
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 292-299
summary This paper examines the connections between digital architectures and interaction design with an emphasis on how the latter informs the former. Digital spatial interfaces have been in development for well over a decade. However there is still a distinct and problematic separation between the function of these spaces architecturally and the functional use of architectural concepts in the design of these spaces. The research presented here outlines an approach to interface design that promotes an architecture that is temporal, interactive and sonic, and is defined explicitly by a functional relationship to its informational content. In particular this research reports on the design of a software prototype that incorporates spatial concepts of interactivity, visualization and sound to assist in the navigation of presentation information, promoting space as a primary interface to an information collection.
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
doi https://doi.org/10.52842/conf.acadia.2007.284
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_384280 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002