CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 599

_id sigradi2006_e159b
id sigradi2006_e159b
authors Barrow, Larry
year 2006
title Digital Design Pedagogy - Basic Design - CADCAM Space Box Exploration
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 127-130
summary This proposed paper will highlight the work of a “pre-architecture” graduate student’s work produced in a “Digital Design II” course in Spring 06. This student has a bachelor’s degree in Architectural Technologies and hopes to attend a “professional” degree program in architecture after completing our Master of Science degree program. The student entered our “pre / post-professional” graduate program as a means of learning more about design, technology and architecture. This provided a rare opportunity to do “research” in the area of digital technology in the early formative phases of a new architecture / design students development. The student chose to study “shadows” as a means of design inquiry. The primary focus of the work was the study of various “4” x 4” x 4” “space-cubes.” The student was given various “design” constraints, and “transformative” operations for the study of positive-negative space relationships, light+shadows, and surface as a means of gaining in-sight to form. The CADCAM tools proved to be empowering for the student’s exploration and learning. With the recent emergence of both more user-friendly hardware and software, we are seeing a paradigm shift in design “ideation.” This is attributed to the evolving human-computer-interface (HCI) that now allows a fluidic means of creative design ideation, digital representation and physical making. Computing technology is now infusing early conceptual design ideation and allowing designers, and form, to follow their ideas. The argument will be supported with primary evidence generated in our pedagogy and research that has shown the visualization and representational power of emerging 2D and 3D CADCAM tools. This paper will analyze the basic “digital design” process used by the writer’s student. Architectural form concepts, heretofore, impossible to model and represent, are now possible due to CADCAM. Emerging designers are integrating “digital thinking” in their fundamental conceptualization of form. These creative free-forms are only feasible for translation to tectonic form using digital design-make techniques. CADCAM tools are empowering designers for form exploration and design creativity. Current computing technology is now infusing the creative design process; the computer is becoming a design “partner” with the designer and is changing form and architecture; thus, we are now seeing unprecedented design-make creativity in architecture.
keywords Basic Design; CADCAM; Digital Design; Virtual 3D Models; Physical 3D Printed Models
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac20053403
id ijac20053403
authors Datta, Sambit; Beynon, David
year 2005
title A Computational Approach to the Reconstruction of Surface Geometry from Early Temple Superstructures
source International Journal of Architectural Computing vol. 3 - no. 4, 471-486
summary Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id acadia06_068
id acadia06_068
authors Elys, John
year 2006
title Digital Ornament
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 68-78
doi https://doi.org/10.52842/conf.acadia.2006.068
summary Gaming software has a history of fostering development of economical and creative methods to deal with hardware limitations. Traditionally the visual representation of gaming software has been a poor offspring of high-end visualization. In a twist of irony, this paper proposes that game production software leads the way into a new era of physical digital ornament. The toolbox of the rendering engine evolved rapidly between 1974-1985 and it is still today, 20 years later the main component of all visualization programs. The development of the bump map is of particular interest; its evolution into a physical displacement map provides untold opportunities of the appropriation of the 2D image to a physical 3D object.To expose the creative potential of the displacement map, a wide scope of existing displacement usage has been identified: Top2maya is a scientific appropriation, Caruso St John Architects an architectural precedent and Tord Boonje’s use of 2D digital pattern provides us with an artistic production precedent. Current gaming technologies give us an indication of how the resolution of displacement is set to enter an unprecedented level of geometric detail. As modernity was inspired by the machine age, we should be led by current technological advancement and appropriate its usage. It is about a move away from the simplification of structure and form to one that deals with the real possibilities of expanding the dialogue of surface topology. Digital Ornament is a kinetic process rather than static, its intentions lie in returning the choice of bespoke materials back to the Architect, Designer and Artist.
series ACADIA
email
last changed 2022/06/07 07:55

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia06_554
id acadia06_554
authors Klinger, Kevin
year 2006
title Perimetric Boundary
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] p. 554
doi https://doi.org/10.52842/conf.acadia.2006.x.t0l
summary A strong dichotomy exists between the factors of fluctuating natural orders apparent in the river, and the striation of the land by human historical and cultural influence. The installation exists as surface of influence between these forces. The form is informed by parameters of light, vista, material, and process through a method of digitally folding and perforating sheets of steel to enable a self structuring membrane which rises and falls from the plateau edge. A swath of prairie grasses, rising and falling in their own cycle, demarcates this edge. A screen of 15 weathering steel sheets stretches for 63’ across the boundary of the human order and the encroaching erosion of the natural realm. From the initial generation of geometry pairings, well “adapted” pairings are spliced from the parent and “bred” with similarly fit geometries. The fit of these pairs is based on the relationships between the form and the desired criteria of reflection, screening, and framing. To properly combine these pairings, several mutations occur (indicated in red).
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia06_095
id acadia06_095
authors Kolarevic, Branko
year 2006
title Manufacturing Surface Effects
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 95-103
doi https://doi.org/10.52842/conf.acadia.2006.095
summary The paper examines the newfound capacity to digitally design and manufacture highly crafted material and surface effects. It traces an emerging trajectory in contemporary architecture aimed at the decorative effects of digitally crafted surface patterns and textures, as a potential return to ornamentation in architecture. It surveys practices whose approach to form and pattern varies from the “ornamented minimalism” of Herzog and de Meuron to the “expressive exuberance” of Greg Lynn. The paper also describes the different digital modes of material production aimed at particular surface effects, as in series of panels with repetitive, yet unique decorative relief or cutout patterns, striated surface configurations, etc.
series ACADIA
email
last changed 2022/06/07 07:51

_id acadia06_471
id acadia06_471
authors Perez, Santiago R.
year 2006
title PolyForm: Biomimetic Surfaces
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 471-482
doi https://doi.org/10.52842/conf.acadia.2006.471
summary The evolution of the architectural surface from a static, fixed geometric assemblage to a responsive, biomimetic aggregate surface will be the topic of this paper. The work exhibited has been developed by the author and his students over the last two years, prompted by an interest in robotics, advanced material assemblies, and biomimetics. The work ranges in scope from digital models and simulations to working prototypes and full-scale habitable constructions. One aspect that serves to unite the emerging body of work may be summarized in the prefix “poly” denoting many, or having more than one state or form. Thus the word Polyform begins to suggest the interplay between biomimesis and adaptive surfaces. A similar term is found in the combination of poly and morph:
series ACADIA
email
last changed 2022/06/07 08:00

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2006_464
id 2006_464
authors Mullins, Michael; Tadeja Zupancic, Christian Kühn, Paul Coates and Orhan Kipcak
year 2006
title V I PA: A virtual campus for virtual space design
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 464-469
doi https://doi.org/10.52842/conf.ecaade.2006.464
summary The conceptual design of virtual spaces is creating new places in which to live and work. In consequence, new opportunities for work and employment are opening up for architects as well as for architectural educators. In response to this challenge, VIPA, a transnational virtual campus is currently being developed; it contains an e-learning and research platform for European architectural schools with a focus on virtual space design. The virtual campus integrates administrative, curricular, and communicative infrastructures, interactive, multimedia 3-D contents, and pedagogical considerations in respect of the aims, content and technologies employed. Virtual campuses are already established at most universities in the European Community, yet surprisingly e-learning is not yet widespread in architectural schools in Europe. E-learning is arguably still in an initial research phase; although there are best practice examples where e-learning is already replacing traditional study forms in other teaching disciplines. However, it has been found that although all the universities involved in the VIPA project have been involved in e-learning projects for many years, there is a considerable resistance to e-learning as being equally effective as traditional face-to-face studio teaching. Given the new virtual conditions of space design however, new contexts for learning are increasingly relevant. University curricula have developed out of local competencies, networks of teachers and researchers. These local factors need to be woven into the fabric of a transnational VIPA curriculum and supported with organizational layout, platform, user interfaces and their features. Participants will offer existing courses in virtual space design, as well as developing new ones. This offers the option for both present and future participants to adjust the VIPA courseware to suit local curricula demands, while offering a large range of courses and knowledge. An additional feature of VIPA is thus as a platform for curricula development in virtual space design. The paper reports on the VIPA project’s aims, pedagogical problems, solutions, course content and methods; it will describe prototype results from participating universities and include perspectives on its future application.
keywords Architectural Education; E-Learning; Virtual Space
series eCAADe
email
last changed 2022/06/07 07:59

_id 2006_040
id 2006_040
authors Ambach, Barbara
year 2006
title Eve’s Four Faces-Interactive surface configurations
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 40-44
doi https://doi.org/10.52842/conf.ecaade.2006.040
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture. The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes; the “Individuated”, the “Traditional”, the “Conflicted” and the “Assured”. (York and John, 1992) For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual; however, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure”. The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how it may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
keywords interaction; digital; environments; psychology; prototypes
series eCAADe
type normal paper
last changed 2022/06/07 07:54

_id acadia06_455
id acadia06_455
authors Ambach, Barbara
year 2006
title Eve’s Four Faces interactive surface configurations
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 455-460
doi https://doi.org/10.52842/conf.acadia.2006.455
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture.The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes: the Individuated, the Traditional, the Conflicted, and the Assured (York and John 1992). For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual. However, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure.” The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how each configuration may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id 2006_868
id 2006_868
authors Becker, Mirco
year 2006
title Branches and Bifurcations - Building a framework for modeling with isosurfaces in Generative Components
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 868-873
doi https://doi.org/10.52842/conf.ecaade.2006.868
summary An isosurface is a three-dimensional representation of a constant value of a field function within a given volume. They are normally used in computer graphics to visualize data in fluid dynamics, medical imaging, geophysics, and meteorology. The advantage of isosurfaces is that they can represent all sorts of topologies. That makes them a perfect tool for modeling, branching, forking, and bifurcating objects with smooth transitions. As they work of a field function, the surface is implicit, the polygonization an approximation. This is a good base for coupling performance with precision. The task was to define a set of handles to change and model an isosurface. It had to happen through the modeling of the field function in a way that is rather intuitive but without giving up the precision one is used to have from standard NURBS/BREP modeling. The paper shows how a modeling framework for isosurfaces is implemented as a plug-in for Bentley Systems Generative Components allowing an intuitive way of exploring design variations. The implementation is illustrated with a proof of concept showing a sketch design.
keywords Isosurface; Polygonization; Scalar field; Marching Cube; Generative Components
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia06_440
id acadia06_440
authors Bell, Brad
year 2006
title The Aggregate of Continuum
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 440-454
doi https://doi.org/10.52842/conf.acadia.2006.440
summary The Traversable Matrix (Fig. 1.) illustrates the iterative fragments that comprise the continuum of exploration for a digital aesthetic and digital tectonic. These non-hierarchical fragments operate as footholds across a larger tessellated landscape of current digital design explorations. In seeking an organizational strategy, we attempt to move laterally across a variety of examples, texts, and illustrations. Each short excerpt is a partial architecture illustrating deeper issues in the current discussion of digital fabrication. Though counter to conventional academic inquiry, the associative approach can help frame the matrix; the synthetic landscape traversed becomes less linear, less framed but no less interconnected and cohesive. The patterning of complex geometries, the production of ornament, the leveraging of digital fabrication against standard forms of material and construction practices, and the acute emphasis on surface all serve as the aggregate to a broader spectrum of architectural thinking and architectural making.Introduction: The Traversable Matrix
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_684
id 2006_684
authors De Bodt, Kathleen
year 2006
title SoundScapes & Architectural Spaces - Spatial sound research in digital architectural design
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 684-689
doi https://doi.org/10.52842/conf.ecaade.2006.684
summary The paper presents ongoing research focusing on the development of digital tools and methodologies for spatial design based on non-Euclidean geometries. It addresses the way sound can be used both conceptually and acoustically in the early stages of the design process, examining digital architectural design and modeling based on three-dimensional sound visualization and the acoustical analysis and evaluation of complex curved surface geometry. The paper describes SoundMatrix, the first part of a digital design tool created by using Max/Msp/Jitter, to assist in the preliminary design of building façades in small-scale urban environments, specifically studying the possibilities of curvature to decrease sound reflection between opposing street façades. Examples from a workshop with the SoundMatrix application illustrate the real-time 3D authoring and sound spatialisation processing currently implemented in the tool.
keywords graphical programming; performance-based design; generative design
series eCAADe
email
last changed 2022/06/07 07:55

_id 2006_058
id 2006_058
authors Fukuda, Tomohiro; Kazuhiro Sakata; Wookhyun Yeo and Atsuko Kaga
year 2006
title Development and Evaluation of a Close-range View Representation Method of Natural Elements in a Real-time Simulation for Environmental Design - Shadow, Grass, and Water Surface
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 58-65
doi https://doi.org/10.52842/conf.ecaade.2006.058
summary In this research, a close-range view expression method used in real-time simulation based on virtual reality technology is developed for environmental design evaluation. After describing the purpose and accuracy of representation, the problem of natural element representation in a close-range view, which has not been developed yet, is clarified. Next, the close-range view expression method of shadows, grass, and water surface is developed. Furthermore, the developed method is applied to a number of actual environmental design projects, and frame rate measurement and user evaluation are performed.
keywords Environmental Design; Real-time Simulation; Virtual Reality; Consensus-building; Representation of natural elements
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2006_e185d
id sigradi2006_e185d
authors Geva, Anat and Mukherji, Anuradha
year 2006
title The Holy Darkness: A Study of Light in Brihadeshvara Hindu Temple, in Tanjore, Tamilnadu, India (1010 AD)
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 425-428
summary The study investigates how religious principles govern the treatment of light/darkness in sacred monument. Specifically, a digitized daylight simulation is used in the analysis of Brihadeshvara Hindu Temple, built in 1010 AD in Tanjore, Tamilnadu, India. This sacred monument, listed as one of UNESCO's World Heritage Sites, is an intriguing case study since the treatment of the 'holy light' in the temple is the treatment of the 'holy darkness'.In spite of the importance given to sun in ancient Hindu scriptures, natural light was used very sparsely in Hindu temples. According to Hindu religious belief, when a worshipper is in the presence of the divine, there should be nothing to distract his/her senses (including vision). Therefore, the innermost sanctum is shrouded in total darkness and the progression into the temple is a ritual movement where the devotee goes through the dynamic experience of the darkening spaces of the temple before reaching the dark sacred chamber (see Fig.1). The dictation of the Hindu faith to create this spiritual procession toward the 'holy darkness' is examined in the historic Brihadeshvara Temple by using Lightscape -- computerized lighting simulation software. To run the program, a 3-D CAD surface model of the temple was created and imported into Lightscape. Then the model was assigned materials and its openings and lighting systems were defined. The simulations were run on four interior horizontal (floor) and vertical (walls) surfaces, along four spaces of the procession in the temple. The simulation targeted three time frames: sunrise, sunset and at high noon on March 21st (the equinox). The location of Tanjore, India was used for light conditions. The Lightscape simulations used the process of radiosity to generate single frame daylight renderings along with light analysis of each surface. A lighting animation was then produced in Quick Time.The results of this analysis demonstrate that the average illumination values for specific surfaces of the temple along the procession sequence correspond to the schematic expectation depicted in Figure 1, i.e., a progressively decreased luminance towards the dark innermost chamber. Furthermore, the simulated values were compared to the Illuminating Engineering Society (IES) standards, which recommend ranges of luminance for specific visual tasks and areas. The comparisons showed that the average luminance in the temple, from the illuminated entrance in the east to the darker chamber in the west, is lower than the IES standards for 'public places with dark surroundings' for 'short temporary visits'. Finally, a morphological analysis of the temple along accepted daylight design guidelines corroborated the previous findings. The multi-method investigation of the relationship of light and darkness, light and objects, and the designated light quality in the Brihadeshvara Temple demonstrates the strong influence of the specific dictum of Hinduism on the light/darkness treatment in the temple. The paper concludes that digitized media such as computerized daylight simulations can examine the significance of light/darkness in sacred monuments as a spiritual experience. This quantitative investigation can augment the qualitative studies in the field of historic sacred architecture.
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2009_046
id caadria2009_046
authors Haeusler, Matthias Hank
year 2009
title Modulations of Voxel Surfaces Through Emotional Expressions to Generate A Feedback Loop Between Private Mood and Public Image
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2009.173
summary My proposal is an investigation into the perceptual boundaries between human and architectural expression. It asks how architecture can creatively adopt human expression by using the emotions ‘displayed’ on the ‘surface face’ as a generator for displaying a surface on a voxel façade to achieve a cross-connecting perceptual change with modulations through emotion (Massumi, 2006). Through voxel facades the public with their expressed emotions will be included in the decision process of defining space, by expressing our innermost feelings through an architectural medium. Thus emotions of the individual have a platform and can be conveyed indirectly to the public, and in turn open up discussions about the state of the community through the state of the façade. An alliance of media and place in an urban context can be achieved and created, with the participation of its inhabitants, along with a new perception of how media and architecture can together shape and inform spatial relations for a feedback loop between private mood and public image.
keywords Voxel façade; simulation; human-environment interaction; dynamic space
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia06_556
id acadia06_556
authors Johnson, J., Gattegno, N.
year 2006
title Future Cities Lab | Energy Farm: Seoul Opera House
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 556-559
doi https://doi.org/10.52842/conf.acadia.2006.556
summary The patterning ranges are developed by merging images of the river surface with tonal ranges that pair with the desired transparency of the metal surface. Water surface images were chosen for the non-uniform distribution of tone. Light tonal areas create small punches, while dark tonal areas create larger punches. The water composite image is rasterized in a half-tone patterning and converted to fabrication data with RhinoScripts for CNC production.
series ACADIA
email
last changed 2022/06/07 07:52

_id sigradi2006_e149b
id sigradi2006_e149b
authors Kendir, Elif
year 2006
title Prêt-à-Construire – An Educational Inquiry into Computer Aided Fabrication
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 162-165
summary This paper aims to show and discuss the relevance of developing necessary strategies for reintegrating the concept of fabrication into the architectural design process. The discussion will be partly based on the outcome of a graduate architectural design studio conducted in Spring semester 2002-2003. The graduate studio was part of a series of exploratory studies conducted on the nature of architectural design process transformed by information technologies. Preceded by studios investigating cognition and representation, this last studio focused on the concept of fabrication. The overarching aim of the studio series was to put CAD and CAM in context both within the actual architectural design process and within architectural education. The last of this series, which will be discussed within the frame of this paper, has specifically focused on CAM and the concept of fabrication in architecture. In accordance with the nature of a design studio, the research was more methodological than technical. The studio derived its main inspiration from the constructional templates used in dressmaking, which can be considered as an initial model for mass customization. In this context, the recladding of Le Corbusier’s Maison Domino was given as the main design problem, along with several methodological constraints. The main constraint was to develop the design idea through constructional drawings instead of representational ones. The students were asked to develop their volumetric ideas through digital 3D CAD models while working out structural solutions on a physical 1/50 model of Maison Domino. There was also a material constraint for the model, where only specified types of non-structural paper could be used. At this stage, origami provided the working model for adding structural strength to sheet materials. The final outcome included the explanation of different surface generation strategies and preliminary design proposals for their subcomponents. The paper will discuss both the utilized methodology and the final outcome along the lines of the issues raised during the studio sessions, some of which could be decisive in the putting into context of CAD – CAM in architectural design process. One such issue is mass customization, that is, the mass production of different specific elements with the help of CAM technologies. Another issue is “open source” design, indicating the possibility of a do-it-yourself architecture, where architecture is coded as information, and its code can be subject to change by different designers. The final key issue is the direct utilization of constructional drawings in the preliminary design phase as opposed to representational ones, which aimed at reminding the designer the final phase of fabrication right from the beginning. Finally, the paper will also point at the problems faced during the conduct of the studio and discuss those in the context of promoting CAM for architectural design and production in countries where there is no actual utilization of these technologies for these purposes yet.
keywords Education; Fabrication; CAM
series SIGRADI
email
last changed 2016/03/10 09:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_11018 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002