CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id caadria2007_005
id caadria2007_005
authors Oxman, Neri; Jesse L. Rosenberg
year 2007
title Material Based Design Computation
doi https://doi.org/10.52842/conf.caadria.2007.x.d2j
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary The paper unfolds the association between geometry and material behaviour, specifically the elastic properties of resin impregnated latex membranes, by means of homogenizing protocols which translate physical properties into geometrical functions. Resinimpregnation patterns are applied to 2D pre-stretched form-active tension systems to induce 3D curvature upon release. This method enables form-finding based on material properties, organization and behaviour. A digital tool developed in the Processing environment demonstrates the simulation of material behaviour and its prediction under specific environmental conditions. Finally, conclusions are drawn from the physical and digital explorations which redefine generative material-based design computation, supporting a synergetic approach to design integrating form, material and environment.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20075102
id ijac20075102
authors Oxman, Neri; Rosenberg, Jesse Louis
year 2007
title Material-based Design Computation: An Inquiry into Digital Simulation of Physical Material Properties as Design Generators
source International Journal of Architectural Computing vol. 5 - no. 1, pp. 26-44
summary The paper demonstrates the association between geometry and material behavior, specifically the elastic properties of resin impregnated latex membranes, by means of homogenizing protocols which translate physical properties into geometrical functions. Resin-impregnation patterns are applied to 2-D pre-stretched form-active tension systems to induce 3-D curvature upon release. This method enables form-finding based on material properties, organization and behavior. Some theoretical foundations for material-computation are outlined. A digital tool developed in the Processing (JAVA coded) environment demonstrates the simulation of material behavior and its prediction under specific environmental conditions. Finally, conclusions are drawn from the physical and digital explorations which redefine generative material-based design computation, supporting a synergetic approach to design integrating form, structure, material and environment.
series journal
email
last changed 2007/06/14 12:11

No more hits.

HOMELOGIN (you are user _anon_922759 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002